Loading…
A pH-Sensing Fluorescent Metal-Organic Framework: pH-Triggered Fluorescence Transition and Detection of Mycotoxin
Due to its great relevance to environmental, biological, and chemical processes, the precise detection of pH or acidic/basic species is an ongoing and imperative need. In this context, pH-sensitive luminescent systems are highly desired. We reported a three-dimensional Zn(II) MOF synthesized from a...
Saved in:
Published in: | Inorganic chemistry 2020-10, Vol.59 (20), p.15421-15429 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to its great relevance to environmental, biological, and chemical processes, the precise detection of pH or acidic/basic species is an ongoing and imperative need. In this context, pH-sensitive luminescent systems are highly desired. We reported a three-dimensional Zn(II) MOF synthesized from a bipyridyl-tetracarboxylic ligand and composed of 4-fold interpenetrated diamond frameworks. Because the steric hindrance in the ligand prevents metal coordination with the pyridyl group, the MOF features free basic N sites accessible to the small H
ions, which renders pH responsivity. The aqueous dispersion exhibits an abrupt, high-contrast, and reversible on-off fluorescence transition in the narrow pH range of 5.4-6.2. The sensitive bistable system can be used for the precise monitoring of pH within the range and for use as a pH-triggered optical switch. The responsive mechanism through pyridyl protonation is collaboratively supported by data fitting, absorption spectra, and molecular orbital calculations. In particular, spectral and theoretical analyses reveal the destruction of n → π* transitions and the appearance of intramolecular charge-transfer transitions upon pyridyl protonation. Moreover, by virtue of the pH-responsive fluorescence, the MOF shows appealing sensing performance for the detection of 3-nitropropionic acid, a major mycotoxin in moldy sugar cane. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.0c02419 |