Loading…

Ratiometric Oxygen Sensing with H‑NOX Protein Conjugates

Ratiometric sensors are self-referencing constructs that are functional in cells and tissues, and the read-out is independent of sensor concentration. One strategy for ratiometric sensing is to utilize two-color emission, where one component possesses analyte-dependent emission and the other is inde...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2022-07, Vol.61 (27), p.10521-10532
Main Authors: Lemon, Christopher M., Hanley, Deirdre, Batka, Allison E., Marletta, Michael A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ratiometric sensors are self-referencing constructs that are functional in cells and tissues, and the read-out is independent of sensor concentration. One strategy for ratiometric sensing is to utilize two-color emission, where one component possesses analyte-dependent emission and the other is independent of analyte concentration, serving as an internal standard. In this way, the intensity ratio of the two components is a quantitative measure of the analyte. In this study, protein-based ratiometric oxygen sensors are prepared using the heme nitric oxide/oxygen-binding protein (H-NOX) from the thermophilic bacterium Caldanaerobacter subterraneus. The native heme cofactor is replaced with a Pd­(II) or Pt­(II) porphyrin as the oxygen-responsive phosphor. Mutagenesis is performed to incorporate a cysteine residue on the protein surface for thiol/maleimide coupling of the oxygen-insensitive dye, which serves as a Förster resonance energy transfer (FRET) donor for the porphyrin. While both Pd­(II)- and Pt­(II)-based sensors are responsive over biologically relevant ranges, the Pd sensor exhibits greater sensitivity at lower oxygen concentrations. Together, these sensors represent a new class of protein-based ratiometric oxygen sensors, and the modular platform allows the oxygen sensitivity to be tailored for a specific application. This proof-of-principle study has identified the key considerations and optimal methodologies to develop and subsequently refine protein-based ratiometric oxygen sensors.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.2c01430