Loading…
Ratiometric Oxygen Sensing with H‑NOX Protein Conjugates
Ratiometric sensors are self-referencing constructs that are functional in cells and tissues, and the read-out is independent of sensor concentration. One strategy for ratiometric sensing is to utilize two-color emission, where one component possesses analyte-dependent emission and the other is inde...
Saved in:
Published in: | Inorganic chemistry 2022-07, Vol.61 (27), p.10521-10532 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ratiometric sensors are self-referencing constructs that are functional in cells and tissues, and the read-out is independent of sensor concentration. One strategy for ratiometric sensing is to utilize two-color emission, where one component possesses analyte-dependent emission and the other is independent of analyte concentration, serving as an internal standard. In this way, the intensity ratio of the two components is a quantitative measure of the analyte. In this study, protein-based ratiometric oxygen sensors are prepared using the heme nitric oxide/oxygen-binding protein (H-NOX) from the thermophilic bacterium Caldanaerobacter subterraneus. The native heme cofactor is replaced with a Pd(II) or Pt(II) porphyrin as the oxygen-responsive phosphor. Mutagenesis is performed to incorporate a cysteine residue on the protein surface for thiol/maleimide coupling of the oxygen-insensitive dye, which serves as a Förster resonance energy transfer (FRET) donor for the porphyrin. While both Pd(II)- and Pt(II)-based sensors are responsive over biologically relevant ranges, the Pd sensor exhibits greater sensitivity at lower oxygen concentrations. Together, these sensors represent a new class of protein-based ratiometric oxygen sensors, and the modular platform allows the oxygen sensitivity to be tailored for a specific application. This proof-of-principle study has identified the key considerations and optimal methodologies to develop and subsequently refine protein-based ratiometric oxygen sensors. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.2c01430 |