Loading…

Cuprizone-Induced Demyelination in Mouse Hippocampus Is Alleviated by Ketogenic Diet

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Recently, ketogenic diet (KD) supplementation has attracted great interest. Therefore, we established the cuprizone (CPZ)-induced demyelination mouse model to investigate the possible neuropr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2020-10, Vol.68 (40), p.11215-11228
Main Authors: Liu, Chunhong, Zhang, Ning, Zhang, Ruiyan, Jin, Li, Petridis, Athanasios K, Loers, Gabriele, Zheng, Xuexing, Wang, Zhengping, Siebert, Hans-Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Recently, ketogenic diet (KD) supplementation has attracted great interest. Therefore, we established the cuprizone (CPZ)-induced demyelination mouse model to investigate the possible neuroprotective effect of KD on the hippocampus of mice. We found that KD significantly elevated the level of serum β-hydroxybutyric acid, improved behavioral and motor abnormalities, and impaired the spatial learning and memory of CPZ-induced demyelination mice. Meanwhile, KD lessened the hippocampal demyelination by enhancing the expression of mature oligodendrocytes (OLs), which was revealed by the elevated expression of MBP and CNPase, as well as the luxol fast blue-staining intensity. Furthermore, KD inhibits the activation of microglia (especially M1-like microglia) and reactive astrocytes. Interestingly, KD attenuated the CPZ-induced oxidative stress by decreasing the malondialdehyde (MDA) content and restoring the glutathione (GSH) levels. In addition, the double immunofluorescence staining revealed that KD enhanced the expression of SIRT1 in astrocytes, microglia, and mature oligodendrocytes. Concomitantly, Western blot demonstrated that KD increased the expression of SIRT1, phosphorylated-AKT, mTOR, and PPAR-γ. In conclusion, KD exerted a neuroprotective effect on CPZ-induced demyelination mice, and this activity was associated with the modulation of the SIRT1/PPAR-γ and SIRT1/P-Akt/mTOR pathways.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.0c04604