Loading…
Occurrence and Fate of Steroid Estrogens in a Chinese Typical Concentrated Dairy Farm and Slurry Irrigated Soil
Animal husbandry is the second largest source of steroid estrogen (SE) pollutants in the environment, and it is significant to investigate the occurrence and fate of SEs discharged from concentrated animal feeding operations. In this research, with a Chinese typical concentrated dairy farm as the ob...
Saved in:
Published in: | Journal of agricultural and food chemistry 2021-01, Vol.69 (1), p.67-77 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Animal husbandry is the second largest source of steroid estrogen (SE) pollutants in the environment, and it is significant to investigate the occurrence and fate of SEs discharged from concentrated animal feeding operations. In this research, with a Chinese typical concentrated dairy farm as the object, the concentrations of SEs (E1, 17α-E2, 17β-E2, E3, and E1-S3) in slurry, lagoon water, and slurry-irrigated soil samples in summer, autumn, and winter were determined. The total concentrations of SEs (mainly E1, 17α-E2, and 17β-E2) in slurry were very high in the range of 263.1-2475.08 ng·L
. In the lagoon water, the removal efficiencies of the aerobic tank could reach up to 89.53%, with significant fluctuation in different seasons. In the slurry-irrigated soil, the maximum concentrations of SEs in the topsoil and subsoil were 21.54 ng·g
to 6.82 g·g
, respectively. Most of the SEs tended to transport downward and accumulate in the soil accompanied with the complex mutual conversion. Correlations and hierarchical clustering analysis showed a variety of intertransformation among SEs, and the concentrations of SEs were correlated with various physicochemical indexes, such as TN and NO
-N of the slurry, chemical oxygen demand of the lagoon water, and the heavy metals of soil. In addition, 17β-estradiol equivalency assessment and risk quotients indicated that the slurry irrigation and discharge of the lagoon water would cause potential estrogenic risks to the environment. Consequently, reasonable slurry irrigation and lagoon water discharge are essential to efficiently control SE pollution in the environment. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.0c05068 |