Loading…

Exogenous Iron Induces NADPH Oxidases-Dependent Ferroptosis in the Conidia of Aspergillus flavus

Aspergillus flavus is saprophytic soil fungus that contaminates seed crops with the carcinogenic secondary metabolite aflatoxin, posing a significant threat to humans and animals. Ferrous sulfate is a common iron supplement that is used to the treatment of iron-deficiency anemia. Here, we identified...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2021-11, Vol.69 (45), p.13608-13617
Main Authors: Yao, Lishan, Ban, Fangfang, Peng, Shurui, Xu, Dan, Li, Hongbo, Mo, Haizhen, Hu, Liangbin, Zhou, Xiaohui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aspergillus flavus is saprophytic soil fungus that contaminates seed crops with the carcinogenic secondary metabolite aflatoxin, posing a significant threat to humans and animals. Ferrous sulfate is a common iron supplement that is used to the treatment of iron-deficiency anemia. Here, we identified an unexpected inhibitory role of ferrous sulfate on A. flavus. With specific fluorescent dyes, we detected several conidial ferroptosis hallmarks in conidia under the treatment of 1 mM Fe2+, including nonapoptosis necrosis, iron-dependent, lipid peroxide accumulation, and ROS burst. However, unlike traditional ferroptosis in mammals, Fe2+ triggered conidial ferroptosis in A. flavus was regulated by NADPH oxidase (NOXs) activation instead of Fenton reaction. Transcriptomic and some other bioinformatics analyses showed that NoxA in A. flavus might be a potential target of Fe2+, and thus led to the occurrence of conidial ferroptosis. Furthermore, noxA deletion mutant was constructed, and both ROS generation and conidial ferroptosis in ΔnoxA was reduced when exposed to Fe2+. Taken together, our study revealed an exogenous Fe2+-triggered conidial ferroptosis pathway mediated by NoxA of A. flavus, which greatly contributes to the development of an alternative strategy to control this pathogen.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.1c04411