Loading…
Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation
OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predi...
Saved in:
Published in: | Journal of medicinal chemistry 2021-03, Vol.64 (5), p.2762-2776 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083 |
container_end_page | 2776 |
container_issue | 5 |
container_start_page | 2762 |
container_title | Journal of medicinal chemistry |
container_volume | 64 |
creator | Jensen, Ole Brockmöller, Jürgen Dücker, Christof |
description | OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general. |
doi_str_mv | 10.1021/acs.jmedchem.0c02047 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jmedchem_0c02047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b572618449</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujUUTfwJi-wOBtpzNTloSokKAsQLeTTnsrNTBD2hkjex_cAurS1U3uOef-fITcMBgw4OxO6TB436DRK9wMQAMHUZyQHss4JEKCOCU9AM4TnvP0glyG8A4AKePpOblI0xzyjOc98jU1WLfOOq1a19S0sfS5-cA1nbi3VTKy1tWu3dFFV4XWqxbD3jEfLxl9Ca5-o09Kr1yNdIbK17GRPHbOoKGvzredWtOF9oh7gara0PvPLXq3iRuj9KrWzhy2XpEzq9YBr39qn7w83C_Hk2Q2f5yOR7NEpUK2STzYDgVyVgBgwS1meaaLglVDg7llMpVCD4dMGsklgDCZRuSi4lWeSSZApn0ijnO1b0LwaMttvEb5Xcmg3EMtI9TyF2r5AzXGbo-xbVdF7S_0SzEa4Gg4xJvO1_GL_2d-A3P5h04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Jensen, Ole ; Brockmöller, Jürgen ; Dücker, Christof</creator><creatorcontrib>Jensen, Ole ; Brockmöller, Jürgen ; Dücker, Christof</creatorcontrib><description>OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.0c02047</identifier><identifier>PMID: 33606526</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of medicinal chemistry, 2021-03, Vol.64 (5), p.2762-2776</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083</citedby><cites>FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083</cites><orcidid>0000-0002-4776-138X ; 0000-0001-9903-4769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33606526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Ole</creatorcontrib><creatorcontrib>Brockmöller, Jürgen</creatorcontrib><creatorcontrib>Dücker, Christof</creatorcontrib><title>Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general.</description><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEUhRujUUTfwJi-wOBtpzNTloSokKAsQLeTTnsrNTBD2hkjex_cAurS1U3uOef-fITcMBgw4OxO6TB436DRK9wMQAMHUZyQHss4JEKCOCU9AM4TnvP0glyG8A4AKePpOblI0xzyjOc98jU1WLfOOq1a19S0sfS5-cA1nbi3VTKy1tWu3dFFV4XWqxbD3jEfLxl9Ca5-o09Kr1yNdIbK17GRPHbOoKGvzredWtOF9oh7gara0PvPLXq3iRuj9KrWzhy2XpEzq9YBr39qn7w83C_Hk2Q2f5yOR7NEpUK2STzYDgVyVgBgwS1meaaLglVDg7llMpVCD4dMGsklgDCZRuSi4lWeSSZApn0ijnO1b0LwaMttvEb5Xcmg3EMtI9TyF2r5AzXGbo-xbVdF7S_0SzEa4Gg4xJvO1_GL_2d-A3P5h04</recordid><startdate>20210311</startdate><enddate>20210311</enddate><creator>Jensen, Ole</creator><creator>Brockmöller, Jürgen</creator><creator>Dücker, Christof</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4776-138X</orcidid><orcidid>https://orcid.org/0000-0001-9903-4769</orcidid></search><sort><creationdate>20210311</creationdate><title>Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation</title><author>Jensen, Ole ; Brockmöller, Jürgen ; Dücker, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Ole</creatorcontrib><creatorcontrib>Brockmöller, Jürgen</creatorcontrib><creatorcontrib>Dücker, Christof</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Ole</au><au>Brockmöller, Jürgen</au><au>Dücker, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2021-03-11</date><risdate>2021</risdate><volume>64</volume><issue>5</issue><spage>2762</spage><epage>2776</epage><pages>2762-2776</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33606526</pmid><doi>10.1021/acs.jmedchem.0c02047</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4776-138X</orcidid><orcidid>https://orcid.org/0000-0001-9903-4769</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 2021-03, Vol.64 (5), p.2762-2776 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jmedchem_0c02047 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Novel%20High-Affinity%20Substrates%20of%20OCT1%20Using%20Machine%20Learning-Guided%20Virtual%20Screening%20and%20Experimental%20Validation&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Jensen,%20Ole&rft.date=2021-03-11&rft.volume=64&rft.issue=5&rft.spage=2762&rft.epage=2776&rft.pages=2762-2776&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.0c02047&rft_dat=%3Cacs_cross%3Eb572618449%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33606526&rfr_iscdi=true |