Loading…

Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation

OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2021-03, Vol.64 (5), p.2762-2776
Main Authors: Jensen, Ole, Brockmöller, Jürgen, Dücker, Christof
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083
cites cdi_FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083
container_end_page 2776
container_issue 5
container_start_page 2762
container_title Journal of medicinal chemistry
container_volume 64
creator Jensen, Ole
Brockmöller, Jürgen
Dücker, Christof
description OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general.
doi_str_mv 10.1021/acs.jmedchem.0c02047
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jmedchem_0c02047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b572618449</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujUUTfwJi-wOBtpzNTloSokKAsQLeTTnsrNTBD2hkjex_cAurS1U3uOef-fITcMBgw4OxO6TB436DRK9wMQAMHUZyQHss4JEKCOCU9AM4TnvP0glyG8A4AKePpOblI0xzyjOc98jU1WLfOOq1a19S0sfS5-cA1nbi3VTKy1tWu3dFFV4XWqxbD3jEfLxl9Ca5-o09Kr1yNdIbK17GRPHbOoKGvzredWtOF9oh7gara0PvPLXq3iRuj9KrWzhy2XpEzq9YBr39qn7w83C_Hk2Q2f5yOR7NEpUK2STzYDgVyVgBgwS1meaaLglVDg7llMpVCD4dMGsklgDCZRuSi4lWeSSZApn0ijnO1b0LwaMttvEb5Xcmg3EMtI9TyF2r5AzXGbo-xbVdF7S_0SzEa4Gg4xJvO1_GL_2d-A3P5h04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Jensen, Ole ; Brockmöller, Jürgen ; Dücker, Christof</creator><creatorcontrib>Jensen, Ole ; Brockmöller, Jürgen ; Dücker, Christof</creatorcontrib><description>OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.0c02047</identifier><identifier>PMID: 33606526</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of medicinal chemistry, 2021-03, Vol.64 (5), p.2762-2776</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083</citedby><cites>FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083</cites><orcidid>0000-0002-4776-138X ; 0000-0001-9903-4769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33606526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Ole</creatorcontrib><creatorcontrib>Brockmöller, Jürgen</creatorcontrib><creatorcontrib>Dücker, Christof</creatorcontrib><title>Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general.</description><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEUhRujUUTfwJi-wOBtpzNTloSokKAsQLeTTnsrNTBD2hkjex_cAurS1U3uOef-fITcMBgw4OxO6TB436DRK9wMQAMHUZyQHss4JEKCOCU9AM4TnvP0glyG8A4AKePpOblI0xzyjOc98jU1WLfOOq1a19S0sfS5-cA1nbi3VTKy1tWu3dFFV4XWqxbD3jEfLxl9Ca5-o09Kr1yNdIbK17GRPHbOoKGvzredWtOF9oh7gara0PvPLXq3iRuj9KrWzhy2XpEzq9YBr39qn7w83C_Hk2Q2f5yOR7NEpUK2STzYDgVyVgBgwS1meaaLglVDg7llMpVCD4dMGsklgDCZRuSi4lWeSSZApn0ijnO1b0LwaMttvEb5Xcmg3EMtI9TyF2r5AzXGbo-xbVdF7S_0SzEa4Gg4xJvO1_GL_2d-A3P5h04</recordid><startdate>20210311</startdate><enddate>20210311</enddate><creator>Jensen, Ole</creator><creator>Brockmöller, Jürgen</creator><creator>Dücker, Christof</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4776-138X</orcidid><orcidid>https://orcid.org/0000-0001-9903-4769</orcidid></search><sort><creationdate>20210311</creationdate><title>Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation</title><author>Jensen, Ole ; Brockmöller, Jürgen ; Dücker, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Ole</creatorcontrib><creatorcontrib>Brockmöller, Jürgen</creatorcontrib><creatorcontrib>Dücker, Christof</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Ole</au><au>Brockmöller, Jürgen</au><au>Dücker, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2021-03-11</date><risdate>2021</risdate><volume>64</volume><issue>5</issue><spage>2762</spage><epage>2776</epage><pages>2762-2776</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33606526</pmid><doi>10.1021/acs.jmedchem.0c02047</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4776-138X</orcidid><orcidid>https://orcid.org/0000-0001-9903-4769</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2021-03, Vol.64 (5), p.2762-2776
issn 0022-2623
1520-4804
language eng
recordid cdi_crossref_primary_10_1021_acs_jmedchem_0c02047
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Novel%20High-Affinity%20Substrates%20of%20OCT1%20Using%20Machine%20Learning-Guided%20Virtual%20Screening%20and%20Experimental%20Validation&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Jensen,%20Ole&rft.date=2021-03-11&rft.volume=64&rft.issue=5&rft.spage=2762&rft.epage=2776&rft.pages=2762-2776&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.0c02047&rft_dat=%3Cacs_cross%3Eb572618449%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-526f94e21700e72fe565c771b9de6f18384c9918d828004d5cee24b2b65814083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33606526&rfr_iscdi=true