Loading…
Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist
The exchange protein activated by cAMP (EPAC) is a promising drug target for a wide disease range, from neurodegeneration and infections to cancer and cardiovascular conditions. A novel partial agonist of the EPAC isoform 1 (EPAC1), I942, was recently discovered, but its mechanism of action remains...
Saved in:
Published in: | Journal of medicinal chemistry 2020-05, Vol.63 (9), p.4762-4775 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-770a05b6e02bcd43ca43fabcbeb93209b1aeea791b54d3e30d9d9f9bdfa7a0af3 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-770a05b6e02bcd43ca43fabcbeb93209b1aeea791b54d3e30d9d9f9bdfa7a0af3 |
container_end_page | 4775 |
container_issue | 9 |
container_start_page | 4762 |
container_title | Journal of medicinal chemistry |
container_volume | 63 |
creator | Shao, Hongzhao Mohamed, Hebatallah Boulton, Stephen Huang, Jinfeng Wang, Pingyuan Chen, Haiying Zhou, Jia Luchowska-Stańska, Urszula Jentsch, Nicholas G Armstrong, Alison L Magolan, Jakob Yarwood, Stephen Melacini, Giuseppe |
description | The exchange protein activated by cAMP (EPAC) is a promising drug target for a wide disease range, from neurodegeneration and infections to cancer and cardiovascular conditions. A novel partial agonist of the EPAC isoform 1 (EPAC1), I942, was recently discovered, but its mechanism of action remains poorly understood. Here, we utilize NMR spectroscopy to map the I942–EPAC1 interactions at atomic resolution and propose a mechanism for I942 partial agonism. We found that I942 interacts with the phosphate binding cassette (PBC) and base binding region (BBR) of EPAC1, similar to cyclic adenosine monophosphate (cAMP). These results not only reveal the molecular basis for the I942 vs cAMP mimicry and competition, but also suggest that the partial agonism of I942 arises from its ability to stabilize an inhibition-incompetent activation intermediate distinct from both active and inactive EPAC1 states. The mechanism of action of I942 may facilitate drug design for EPAC-related diseases. |
doi_str_mv | 10.1021/acs.jmedchem.9b02151 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jmedchem_9b02151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a88393890</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-770a05b6e02bcd43ca43fabcbeb93209b1aeea791b54d3e30d9d9f9bdfa7a0af3</originalsourceid><addsrcrecordid>eNp9kNtKw0AQhhdRbK2-gUheIHX2kKZ7GUKtQsWCeh1mN7M2pUlKNhV8e7cnL72an5n5BuZj7J7DmIPgj2j9eF1TaVdUj7UJrYRfsCFPBMRqCuqSDQGEiMVEyAG78X4NAJILec0GUgidpkoM2eyV7AqbytdR66LM9lXb7BM20WyZ5Tx-pw2F7jdFeVtvqa8OeYldX-Emyr7awPa37MrhxtPdqY7Y59PsI3-OF2_zlzxbxCjVtI_TFBASMyEQxpZKWlTSobGGjJYCtOFIhKnmJlGlJAmlLrXTpnSYIqCTI6aOd23Xet-RK7ZdVWP3U3Ao9laKYKU4WylOVgL2cMS2OxNmf9BZQ1iA48IBb3ddE774_-YvLKxyEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Shao, Hongzhao ; Mohamed, Hebatallah ; Boulton, Stephen ; Huang, Jinfeng ; Wang, Pingyuan ; Chen, Haiying ; Zhou, Jia ; Luchowska-Stańska, Urszula ; Jentsch, Nicholas G ; Armstrong, Alison L ; Magolan, Jakob ; Yarwood, Stephen ; Melacini, Giuseppe</creator><creatorcontrib>Shao, Hongzhao ; Mohamed, Hebatallah ; Boulton, Stephen ; Huang, Jinfeng ; Wang, Pingyuan ; Chen, Haiying ; Zhou, Jia ; Luchowska-Stańska, Urszula ; Jentsch, Nicholas G ; Armstrong, Alison L ; Magolan, Jakob ; Yarwood, Stephen ; Melacini, Giuseppe</creatorcontrib><description>The exchange protein activated by cAMP (EPAC) is a promising drug target for a wide disease range, from neurodegeneration and infections to cancer and cardiovascular conditions. A novel partial agonist of the EPAC isoform 1 (EPAC1), I942, was recently discovered, but its mechanism of action remains poorly understood. Here, we utilize NMR spectroscopy to map the I942–EPAC1 interactions at atomic resolution and propose a mechanism for I942 partial agonism. We found that I942 interacts with the phosphate binding cassette (PBC) and base binding region (BBR) of EPAC1, similar to cyclic adenosine monophosphate (cAMP). These results not only reveal the molecular basis for the I942 vs cAMP mimicry and competition, but also suggest that the partial agonism of I942 arises from its ability to stabilize an inhibition-incompetent activation intermediate distinct from both active and inactive EPAC1 states. The mechanism of action of I942 may facilitate drug design for EPAC-related diseases.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.9b02151</identifier><identifier>PMID: 32297742</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Allosteric Site ; Arginine - chemistry ; Cyclic AMP - metabolism ; Guanine Nucleotide Exchange Factors - agonists ; Guanine Nucleotide Exchange Factors - chemistry ; Guanine Nucleotide Exchange Factors - metabolism ; Humans ; Molecular Conformation ; Molecular Docking Simulation ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Static Electricity ; Sulfonamides - chemistry ; Sulfonamides - metabolism</subject><ispartof>Journal of medicinal chemistry, 2020-05, Vol.63 (9), p.4762-4775</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-770a05b6e02bcd43ca43fabcbeb93209b1aeea791b54d3e30d9d9f9bdfa7a0af3</citedby><cites>FETCH-LOGICAL-a348t-770a05b6e02bcd43ca43fabcbeb93209b1aeea791b54d3e30d9d9f9bdfa7a0af3</cites><orcidid>0000-0002-2521-2240 ; 0000-0003-1164-2853 ; 0000-0002-2811-1090 ; 0000-0002-2947-8580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32297742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Hongzhao</creatorcontrib><creatorcontrib>Mohamed, Hebatallah</creatorcontrib><creatorcontrib>Boulton, Stephen</creatorcontrib><creatorcontrib>Huang, Jinfeng</creatorcontrib><creatorcontrib>Wang, Pingyuan</creatorcontrib><creatorcontrib>Chen, Haiying</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Luchowska-Stańska, Urszula</creatorcontrib><creatorcontrib>Jentsch, Nicholas G</creatorcontrib><creatorcontrib>Armstrong, Alison L</creatorcontrib><creatorcontrib>Magolan, Jakob</creatorcontrib><creatorcontrib>Yarwood, Stephen</creatorcontrib><creatorcontrib>Melacini, Giuseppe</creatorcontrib><title>Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>The exchange protein activated by cAMP (EPAC) is a promising drug target for a wide disease range, from neurodegeneration and infections to cancer and cardiovascular conditions. A novel partial agonist of the EPAC isoform 1 (EPAC1), I942, was recently discovered, but its mechanism of action remains poorly understood. Here, we utilize NMR spectroscopy to map the I942–EPAC1 interactions at atomic resolution and propose a mechanism for I942 partial agonism. We found that I942 interacts with the phosphate binding cassette (PBC) and base binding region (BBR) of EPAC1, similar to cyclic adenosine monophosphate (cAMP). These results not only reveal the molecular basis for the I942 vs cAMP mimicry and competition, but also suggest that the partial agonism of I942 arises from its ability to stabilize an inhibition-incompetent activation intermediate distinct from both active and inactive EPAC1 states. The mechanism of action of I942 may facilitate drug design for EPAC-related diseases.</description><subject>Allosteric Site</subject><subject>Arginine - chemistry</subject><subject>Cyclic AMP - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - agonists</subject><subject>Guanine Nucleotide Exchange Factors - chemistry</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Humans</subject><subject>Molecular Conformation</subject><subject>Molecular Docking Simulation</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Protein Binding</subject><subject>Static Electricity</subject><subject>Sulfonamides - chemistry</subject><subject>Sulfonamides - metabolism</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKw0AQhhdRbK2-gUheIHX2kKZ7GUKtQsWCeh1mN7M2pUlKNhV8e7cnL72an5n5BuZj7J7DmIPgj2j9eF1TaVdUj7UJrYRfsCFPBMRqCuqSDQGEiMVEyAG78X4NAJILec0GUgidpkoM2eyV7AqbytdR66LM9lXb7BM20WyZ5Tx-pw2F7jdFeVtvqa8OeYldX-Emyr7awPa37MrhxtPdqY7Y59PsI3-OF2_zlzxbxCjVtI_TFBASMyEQxpZKWlTSobGGjJYCtOFIhKnmJlGlJAmlLrXTpnSYIqCTI6aOd23Xet-RK7ZdVWP3U3Ao9laKYKU4WylOVgL2cMS2OxNmf9BZQ1iA48IBb3ddE774_-YvLKxyEw</recordid><startdate>20200514</startdate><enddate>20200514</enddate><creator>Shao, Hongzhao</creator><creator>Mohamed, Hebatallah</creator><creator>Boulton, Stephen</creator><creator>Huang, Jinfeng</creator><creator>Wang, Pingyuan</creator><creator>Chen, Haiying</creator><creator>Zhou, Jia</creator><creator>Luchowska-Stańska, Urszula</creator><creator>Jentsch, Nicholas G</creator><creator>Armstrong, Alison L</creator><creator>Magolan, Jakob</creator><creator>Yarwood, Stephen</creator><creator>Melacini, Giuseppe</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2521-2240</orcidid><orcidid>https://orcid.org/0000-0003-1164-2853</orcidid><orcidid>https://orcid.org/0000-0002-2811-1090</orcidid><orcidid>https://orcid.org/0000-0002-2947-8580</orcidid></search><sort><creationdate>20200514</creationdate><title>Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist</title><author>Shao, Hongzhao ; Mohamed, Hebatallah ; Boulton, Stephen ; Huang, Jinfeng ; Wang, Pingyuan ; Chen, Haiying ; Zhou, Jia ; Luchowska-Stańska, Urszula ; Jentsch, Nicholas G ; Armstrong, Alison L ; Magolan, Jakob ; Yarwood, Stephen ; Melacini, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-770a05b6e02bcd43ca43fabcbeb93209b1aeea791b54d3e30d9d9f9bdfa7a0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allosteric Site</topic><topic>Arginine - chemistry</topic><topic>Cyclic AMP - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - agonists</topic><topic>Guanine Nucleotide Exchange Factors - chemistry</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Humans</topic><topic>Molecular Conformation</topic><topic>Molecular Docking Simulation</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Protein Binding</topic><topic>Static Electricity</topic><topic>Sulfonamides - chemistry</topic><topic>Sulfonamides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Hongzhao</creatorcontrib><creatorcontrib>Mohamed, Hebatallah</creatorcontrib><creatorcontrib>Boulton, Stephen</creatorcontrib><creatorcontrib>Huang, Jinfeng</creatorcontrib><creatorcontrib>Wang, Pingyuan</creatorcontrib><creatorcontrib>Chen, Haiying</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Luchowska-Stańska, Urszula</creatorcontrib><creatorcontrib>Jentsch, Nicholas G</creatorcontrib><creatorcontrib>Armstrong, Alison L</creatorcontrib><creatorcontrib>Magolan, Jakob</creatorcontrib><creatorcontrib>Yarwood, Stephen</creatorcontrib><creatorcontrib>Melacini, Giuseppe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Hongzhao</au><au>Mohamed, Hebatallah</au><au>Boulton, Stephen</au><au>Huang, Jinfeng</au><au>Wang, Pingyuan</au><au>Chen, Haiying</au><au>Zhou, Jia</au><au>Luchowska-Stańska, Urszula</au><au>Jentsch, Nicholas G</au><au>Armstrong, Alison L</au><au>Magolan, Jakob</au><au>Yarwood, Stephen</au><au>Melacini, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2020-05-14</date><risdate>2020</risdate><volume>63</volume><issue>9</issue><spage>4762</spage><epage>4775</epage><pages>4762-4775</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>The exchange protein activated by cAMP (EPAC) is a promising drug target for a wide disease range, from neurodegeneration and infections to cancer and cardiovascular conditions. A novel partial agonist of the EPAC isoform 1 (EPAC1), I942, was recently discovered, but its mechanism of action remains poorly understood. Here, we utilize NMR spectroscopy to map the I942–EPAC1 interactions at atomic resolution and propose a mechanism for I942 partial agonism. We found that I942 interacts with the phosphate binding cassette (PBC) and base binding region (BBR) of EPAC1, similar to cyclic adenosine monophosphate (cAMP). These results not only reveal the molecular basis for the I942 vs cAMP mimicry and competition, but also suggest that the partial agonism of I942 arises from its ability to stabilize an inhibition-incompetent activation intermediate distinct from both active and inactive EPAC1 states. The mechanism of action of I942 may facilitate drug design for EPAC-related diseases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32297742</pmid><doi>10.1021/acs.jmedchem.9b02151</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2521-2240</orcidid><orcidid>https://orcid.org/0000-0003-1164-2853</orcidid><orcidid>https://orcid.org/0000-0002-2811-1090</orcidid><orcidid>https://orcid.org/0000-0002-2947-8580</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 2020-05, Vol.63 (9), p.4762-4775 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jmedchem_9b02151 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Allosteric Site Arginine - chemistry Cyclic AMP - metabolism Guanine Nucleotide Exchange Factors - agonists Guanine Nucleotide Exchange Factors - chemistry Guanine Nucleotide Exchange Factors - metabolism Humans Molecular Conformation Molecular Docking Simulation Nuclear Magnetic Resonance, Biomolecular Protein Binding Static Electricity Sulfonamides - chemistry Sulfonamides - metabolism |
title | Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Action%20of%20an%20EPAC1-Selective%20Competitive%20Partial%20Agonist&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Shao,%20Hongzhao&rft.date=2020-05-14&rft.volume=63&rft.issue=9&rft.spage=4762&rft.epage=4775&rft.pages=4762-4775&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.9b02151&rft_dat=%3Cacs_cross%3Ea88393890%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-770a05b6e02bcd43ca43fabcbeb93209b1aeea791b54d3e30d9d9f9bdfa7a0af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32297742&rfr_iscdi=true |