Loading…
Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis
Cyanosilylation of carbonyl compounds provides protected cyanohydrins, which can be converted into many kinds of compounds such as amino alcohols, amides, esters, and carboxylic acids. In particular, the use of trimethylsilyl cyanide as the sole carbon source can avoid the need for more toxic inorga...
Saved in:
Published in: | Journal of organic chemistry 2021-11, Vol.86 (22), p.16035-16044 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cyanosilylation of carbonyl compounds provides protected cyanohydrins, which can be converted into many kinds of compounds such as amino alcohols, amides, esters, and carboxylic acids. In particular, the use of trimethylsilyl cyanide as the sole carbon source can avoid the need for more toxic inorganic cyanides. In this paper, we describe an electrochemically initiated cyanosilylation of carbonyl compounds and its application to a microflow reactor. Furthermore, to identify suitable reaction conditions, which reflect considerations beyond simply a high yield, we demonstrate machine learning-assisted optimization. Machine learning can be used to adjust the current and flow rate at the same time and identify the conditions needed to achieve the best productivity. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.1c01242 |