Loading…

Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15

Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2017-08, Vol.121 (34), p.8078-8084
Main Authors: Asthagiri, D, Karandur, Deepti, Tomar, Dheeraj S, Pettitt, B Montgomery
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053
cites cdi_FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053
container_end_page 8084
container_issue 34
container_start_page 8078
container_title The journal of physical chemistry. B
container_volume 121
creator Asthagiri, D
Karandur, Deepti
Tomar, Dheeraj S
Pettitt, B Montgomery
description Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(R |r), of the radius of gyration for a given value of r. The free energy change versus R , -k T ln P(R |r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse.
doi_str_mv 10.1021/acs.jpcb.7b05469
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcb_7b05469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28774177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZ4X8AykzTmwnS1SgrVSpm7JgFTl-iFRJHdlppf496QMWV_PQnFkcQp4RpggMX5WO022nq6msgGeiuCFj5AySIfL22gsEMSIPMW4BGGe5uCcjlkuZoZRj8r3c9UG1vrF636hAh9EGpfva7yJdH2zQvrV0cTRBnXa09_Q91AdL-x9LZ75pVBct3QS1i_X5wDs6b44U-SO5c6qJ9ulaJ-Tr82MzWySr9Xw5e1slGhFlwkBVjjngquA55MAKMHmqC4MMNRTCaamNkMyIyhWpGcIMOJtl3GiVAU8nBC5_dfAxBuvKLtStCscSoTxZKgdL5clSebU0IC8XpNtXrTX_wJ-W9BeUmWVi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Asthagiri, D ; Karandur, Deepti ; Tomar, Dheeraj S ; Pettitt, B Montgomery</creator><creatorcontrib>Asthagiri, D ; Karandur, Deepti ; Tomar, Dheeraj S ; Pettitt, B Montgomery</creatorcontrib><description>Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(R |r), of the radius of gyration for a given value of r. The free energy change versus R , -k T ln P(R |r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.7b05469</identifier><identifier>PMID: 28774177</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Glycine - chemistry ; Hydrophobic and Hydrophilic Interactions ; Peptides - chemistry ; Peptides - metabolism ; Thermodynamics ; Water - chemistry</subject><ispartof>The journal of physical chemistry. B, 2017-08, Vol.121 (34), p.8078-8084</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053</citedby><cites>FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053</cites><orcidid>0000-0001-5869-0807 ; 0000-0003-4902-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28774177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asthagiri, D</creatorcontrib><creatorcontrib>Karandur, Deepti</creatorcontrib><creatorcontrib>Tomar, Dheeraj S</creatorcontrib><creatorcontrib>Pettitt, B Montgomery</creatorcontrib><title>Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15</title><title>The journal of physical chemistry. B</title><addtitle>J Phys Chem B</addtitle><description>Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(R |r), of the radius of gyration for a given value of r. The free energy change versus R , -k T ln P(R |r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse.</description><subject>Algorithms</subject><subject>Glycine - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWwZ4X8AykzTmwnS1SgrVSpm7JgFTl-iFRJHdlppf496QMWV_PQnFkcQp4RpggMX5WO022nq6msgGeiuCFj5AySIfL22gsEMSIPMW4BGGe5uCcjlkuZoZRj8r3c9UG1vrF636hAh9EGpfva7yJdH2zQvrV0cTRBnXa09_Q91AdL-x9LZ75pVBct3QS1i_X5wDs6b44U-SO5c6qJ9ulaJ-Tr82MzWySr9Xw5e1slGhFlwkBVjjngquA55MAKMHmqC4MMNRTCaamNkMyIyhWpGcIMOJtl3GiVAU8nBC5_dfAxBuvKLtStCscSoTxZKgdL5clSebU0IC8XpNtXrTX_wJ-W9BeUmWVi</recordid><startdate>20170831</startdate><enddate>20170831</enddate><creator>Asthagiri, D</creator><creator>Karandur, Deepti</creator><creator>Tomar, Dheeraj S</creator><creator>Pettitt, B Montgomery</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5869-0807</orcidid><orcidid>https://orcid.org/0000-0003-4902-3046</orcidid></search><sort><creationdate>20170831</creationdate><title>Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15</title><author>Asthagiri, D ; Karandur, Deepti ; Tomar, Dheeraj S ; Pettitt, B Montgomery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Glycine - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asthagiri, D</creatorcontrib><creatorcontrib>Karandur, Deepti</creatorcontrib><creatorcontrib>Tomar, Dheeraj S</creatorcontrib><creatorcontrib>Pettitt, B Montgomery</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asthagiri, D</au><au>Karandur, Deepti</au><au>Tomar, Dheeraj S</au><au>Pettitt, B Montgomery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J Phys Chem B</addtitle><date>2017-08-31</date><risdate>2017</risdate><volume>121</volume><issue>34</issue><spage>8078</spage><epage>8084</epage><pages>8078-8084</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(R |r), of the radius of gyration for a given value of r. The free energy change versus R , -k T ln P(R |r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse.</abstract><cop>United States</cop><pmid>28774177</pmid><doi>10.1021/acs.jpcb.7b05469</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5869-0807</orcidid><orcidid>https://orcid.org/0000-0003-4902-3046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2017-08, Vol.121 (34), p.8078-8084
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcb_7b05469
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Algorithms
Glycine - chemistry
Hydrophobic and Hydrophilic Interactions
Peptides - chemistry
Peptides - metabolism
Thermodynamics
Water - chemistry
title Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intramolecular%20Interactions%20Overcome%20Hydration%20to%20Drive%20the%20Collapse%20Transition%20of%20Gly%2015&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Asthagiri,%20D&rft.date=2017-08-31&rft.volume=121&rft.issue=34&rft.spage=8078&rft.epage=8084&rft.pages=8078-8084&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.7b05469&rft_dat=%3Cpubmed_cross%3E28774177%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/28774177&rfr_iscdi=true