Loading…
Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15
Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (...
Saved in:
Published in: | The journal of physical chemistry. B 2017-08, Vol.121 (34), p.8078-8084 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053 |
---|---|
cites | cdi_FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053 |
container_end_page | 8084 |
container_issue | 34 |
container_start_page | 8078 |
container_title | The journal of physical chemistry. B |
container_volume | 121 |
creator | Asthagiri, D Karandur, Deepti Tomar, Dheeraj S Pettitt, B Montgomery |
description | Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(R
|r), of the radius of gyration for a given value of r. The free energy change versus R
, -k
T ln P(R
|r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse. |
doi_str_mv | 10.1021/acs.jpcb.7b05469 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcb_7b05469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28774177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZ4X8AykzTmwnS1SgrVSpm7JgFTl-iFRJHdlppf496QMWV_PQnFkcQp4RpggMX5WO022nq6msgGeiuCFj5AySIfL22gsEMSIPMW4BGGe5uCcjlkuZoZRj8r3c9UG1vrF636hAh9EGpfva7yJdH2zQvrV0cTRBnXa09_Q91AdL-x9LZ75pVBct3QS1i_X5wDs6b44U-SO5c6qJ9ulaJ-Tr82MzWySr9Xw5e1slGhFlwkBVjjngquA55MAKMHmqC4MMNRTCaamNkMyIyhWpGcIMOJtl3GiVAU8nBC5_dfAxBuvKLtStCscSoTxZKgdL5clSebU0IC8XpNtXrTX_wJ-W9BeUmWVi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Asthagiri, D ; Karandur, Deepti ; Tomar, Dheeraj S ; Pettitt, B Montgomery</creator><creatorcontrib>Asthagiri, D ; Karandur, Deepti ; Tomar, Dheeraj S ; Pettitt, B Montgomery</creatorcontrib><description>Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(R
|r), of the radius of gyration for a given value of r. The free energy change versus R
, -k
T ln P(R
|r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.7b05469</identifier><identifier>PMID: 28774177</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Glycine - chemistry ; Hydrophobic and Hydrophilic Interactions ; Peptides - chemistry ; Peptides - metabolism ; Thermodynamics ; Water - chemistry</subject><ispartof>The journal of physical chemistry. B, 2017-08, Vol.121 (34), p.8078-8084</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053</citedby><cites>FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053</cites><orcidid>0000-0001-5869-0807 ; 0000-0003-4902-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28774177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asthagiri, D</creatorcontrib><creatorcontrib>Karandur, Deepti</creatorcontrib><creatorcontrib>Tomar, Dheeraj S</creatorcontrib><creatorcontrib>Pettitt, B Montgomery</creatorcontrib><title>Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15</title><title>The journal of physical chemistry. B</title><addtitle>J Phys Chem B</addtitle><description>Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(R
|r), of the radius of gyration for a given value of r. The free energy change versus R
, -k
T ln P(R
|r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse.</description><subject>Algorithms</subject><subject>Glycine - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWwZ4X8AykzTmwnS1SgrVSpm7JgFTl-iFRJHdlppf496QMWV_PQnFkcQp4RpggMX5WO022nq6msgGeiuCFj5AySIfL22gsEMSIPMW4BGGe5uCcjlkuZoZRj8r3c9UG1vrF636hAh9EGpfva7yJdH2zQvrV0cTRBnXa09_Q91AdL-x9LZ75pVBct3QS1i_X5wDs6b44U-SO5c6qJ9ulaJ-Tr82MzWySr9Xw5e1slGhFlwkBVjjngquA55MAKMHmqC4MMNRTCaamNkMyIyhWpGcIMOJtl3GiVAU8nBC5_dfAxBuvKLtStCscSoTxZKgdL5clSebU0IC8XpNtXrTX_wJ-W9BeUmWVi</recordid><startdate>20170831</startdate><enddate>20170831</enddate><creator>Asthagiri, D</creator><creator>Karandur, Deepti</creator><creator>Tomar, Dheeraj S</creator><creator>Pettitt, B Montgomery</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5869-0807</orcidid><orcidid>https://orcid.org/0000-0003-4902-3046</orcidid></search><sort><creationdate>20170831</creationdate><title>Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15</title><author>Asthagiri, D ; Karandur, Deepti ; Tomar, Dheeraj S ; Pettitt, B Montgomery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Glycine - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asthagiri, D</creatorcontrib><creatorcontrib>Karandur, Deepti</creatorcontrib><creatorcontrib>Tomar, Dheeraj S</creatorcontrib><creatorcontrib>Pettitt, B Montgomery</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asthagiri, D</au><au>Karandur, Deepti</au><au>Tomar, Dheeraj S</au><au>Pettitt, B Montgomery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J Phys Chem B</addtitle><date>2017-08-31</date><risdate>2017</risdate><volume>121</volume><issue>34</issue><spage>8078</spage><epage>8084</epage><pages>8078-8084</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Simulations and experiments show oligo-glycines, polypeptides lacking any side chains, can collapse in water. We assess the hydration thermodynamics of this collapse by calculating the hydration free energy at each of the end points of the reaction coordinate, here taken as the end-to-end distance (r) in the chain. To examine the role of the various conformations for a given r, we study the conditional distribution, P(R
|r), of the radius of gyration for a given value of r. The free energy change versus R
, -k
T ln P(R
|r), is found to vary more gently compared to the corresponding variation in the excess hydration free energy. Using this observation within a multistate generalization of the potential distribution theorem, we calculate a tight upper bound for the hydration free energy of the peptide for a given r. On this basis, we find that peptide hydration greatly favors the expanded state of the chain, despite primitive hydrophobic effects favoring chain collapse. The net free energy of collapse is seen to be a delicate balance between opposing intrapeptide and hydration effects, with intrapeptide contributions favoring collapse.</abstract><cop>United States</cop><pmid>28774177</pmid><doi>10.1021/acs.jpcb.7b05469</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5869-0807</orcidid><orcidid>https://orcid.org/0000-0003-4902-3046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2017-08, Vol.121 (34), p.8078-8084 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcb_7b05469 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Algorithms Glycine - chemistry Hydrophobic and Hydrophilic Interactions Peptides - chemistry Peptides - metabolism Thermodynamics Water - chemistry |
title | Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly 15 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intramolecular%20Interactions%20Overcome%20Hydration%20to%20Drive%20the%20Collapse%20Transition%20of%20Gly%2015&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Asthagiri,%20D&rft.date=2017-08-31&rft.volume=121&rft.issue=34&rft.spage=8078&rft.epage=8084&rft.pages=8078-8084&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.7b05469&rft_dat=%3Cpubmed_cross%3E28774177%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1117-20abf2f05a958080290d83c9d121c096fc7cd672d6bf93df932d0fe445dca4053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/28774177&rfr_iscdi=true |