Loading…

Cathode Electrolyte Interphase Formation and Electrolyte Oxidation Mechanism for Ni-Rich Cathode Materials

Herein, we investigate the formation of a cathode electrolyte interphase (CEI) by electrolyte oxidation on a LiNi x M1–x O2 (x > 0.5; M, transition metal) layered oxide (Ni-rich) cathode and compare this phenomenon with a Li-rich layered oxide (Li-rich) cathode. Our investigations focused on two...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2020-04, Vol.124 (17), p.9243-9248
Main Authors: Takahashi, Ikuma, Kiuchi, Hisao, Ohma, Atsushi, Fukunaga, Toshiharu, Matsubara, Eiichiro
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a346t-b9b93ab1ffcdf54b491daf3b56b9a3edb4df27fb9c0e1d3b17e4a95bf3b2b9353
cites cdi_FETCH-LOGICAL-a346t-b9b93ab1ffcdf54b491daf3b56b9a3edb4df27fb9c0e1d3b17e4a95bf3b2b9353
container_end_page 9248
container_issue 17
container_start_page 9243
container_title Journal of physical chemistry. C
container_volume 124
creator Takahashi, Ikuma
Kiuchi, Hisao
Ohma, Atsushi
Fukunaga, Toshiharu
Matsubara, Eiichiro
description Herein, we investigate the formation of a cathode electrolyte interphase (CEI) by electrolyte oxidation on a LiNi x M1–x O2 (x > 0.5; M, transition metal) layered oxide (Ni-rich) cathode and compare this phenomenon with a Li-rich layered oxide (Li-rich) cathode. Our investigations focused on two electrochemical properties, the potential and kinetics of electrolyte oxidation, studied using hard X-ray photoelectron spectroscopy (HAXPES), soft X-ray absorption spectroscopy, and density functional theory calculations. HAXPES revealed that a thicker CEI formed on the Ni-rich cathode compared to that on the Li-rich cathode, despite the operation potential of the Ni-rich cathode being lower than that of the Li-rich cathode. Thus, the Ni-rich cathode induces the CEI formation through active oxidation of the electrolyte during charge–discharge cycles. The electronic state of the Ni-rich cathode indicates that the antibonding hybrid orbital of the transition metal 3d–O 2p corresponds to the lowest unoccupied molecular orbital energy level, that is, the hole, and lies near the highest occupied molecular orbital energy level of the electrolyte. In addition, the hole concentration in the charged state was found to be significantly increased, in comparison to other active materials, which promotes oxidization of the electrolyte.
doi_str_mv 10.1021/acs.jpcc.0c02198
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_0c02198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e85238145</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-b9b93ab1ffcdf54b491daf3b56b9a3edb4df27fb9c0e1d3b17e4a95bf3b2b9353</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3j_kBbk02SdccZWm10FoQPS-TLzal3SzJCvbfm9oqePA0M7wfDA9Ct5RMKCnpPeg02fRaT4jOp3w4QyMqWVlUXIjz351Xl-gqpQ0hghHKRmhTw9AGY_Fsa_UQw3Y_WLzoBhv7FpLF8xB3MPjQYejMH9P605ujsrK6hc6nHXYh4hdfvHrd4p_iFeQyD9t0jS5cHvbmNMfofT57q5-L5fppUT8uC2B8OhRKKslAUee0cYIrLqkBx5SYKgnMGsWNKyunpCaWGqZoZTlIobKlzEnBxogce3UMKUXrmj76HcR9Q0lzYNVkVs2BVXNilSN3x8i3Ej5ilx_83_4FWohwzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cathode Electrolyte Interphase Formation and Electrolyte Oxidation Mechanism for Ni-Rich Cathode Materials</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Takahashi, Ikuma ; Kiuchi, Hisao ; Ohma, Atsushi ; Fukunaga, Toshiharu ; Matsubara, Eiichiro</creator><creatorcontrib>Takahashi, Ikuma ; Kiuchi, Hisao ; Ohma, Atsushi ; Fukunaga, Toshiharu ; Matsubara, Eiichiro</creatorcontrib><description>Herein, we investigate the formation of a cathode electrolyte interphase (CEI) by electrolyte oxidation on a LiNi x M1–x O2 (x &gt; 0.5; M, transition metal) layered oxide (Ni-rich) cathode and compare this phenomenon with a Li-rich layered oxide (Li-rich) cathode. Our investigations focused on two electrochemical properties, the potential and kinetics of electrolyte oxidation, studied using hard X-ray photoelectron spectroscopy (HAXPES), soft X-ray absorption spectroscopy, and density functional theory calculations. HAXPES revealed that a thicker CEI formed on the Ni-rich cathode compared to that on the Li-rich cathode, despite the operation potential of the Ni-rich cathode being lower than that of the Li-rich cathode. Thus, the Ni-rich cathode induces the CEI formation through active oxidation of the electrolyte during charge–discharge cycles. The electronic state of the Ni-rich cathode indicates that the antibonding hybrid orbital of the transition metal 3d–O 2p corresponds to the lowest unoccupied molecular orbital energy level, that is, the hole, and lies near the highest occupied molecular orbital energy level of the electrolyte. In addition, the hole concentration in the charged state was found to be significantly increased, in comparison to other active materials, which promotes oxidization of the electrolyte.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c02198</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2020-04, Vol.124 (17), p.9243-9248</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-b9b93ab1ffcdf54b491daf3b56b9a3edb4df27fb9c0e1d3b17e4a95bf3b2b9353</citedby><cites>FETCH-LOGICAL-a346t-b9b93ab1ffcdf54b491daf3b56b9a3edb4df27fb9c0e1d3b17e4a95bf3b2b9353</cites><orcidid>0000-0002-8217-7058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Takahashi, Ikuma</creatorcontrib><creatorcontrib>Kiuchi, Hisao</creatorcontrib><creatorcontrib>Ohma, Atsushi</creatorcontrib><creatorcontrib>Fukunaga, Toshiharu</creatorcontrib><creatorcontrib>Matsubara, Eiichiro</creatorcontrib><title>Cathode Electrolyte Interphase Formation and Electrolyte Oxidation Mechanism for Ni-Rich Cathode Materials</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Herein, we investigate the formation of a cathode electrolyte interphase (CEI) by electrolyte oxidation on a LiNi x M1–x O2 (x &gt; 0.5; M, transition metal) layered oxide (Ni-rich) cathode and compare this phenomenon with a Li-rich layered oxide (Li-rich) cathode. Our investigations focused on two electrochemical properties, the potential and kinetics of electrolyte oxidation, studied using hard X-ray photoelectron spectroscopy (HAXPES), soft X-ray absorption spectroscopy, and density functional theory calculations. HAXPES revealed that a thicker CEI formed on the Ni-rich cathode compared to that on the Li-rich cathode, despite the operation potential of the Ni-rich cathode being lower than that of the Li-rich cathode. Thus, the Ni-rich cathode induces the CEI formation through active oxidation of the electrolyte during charge–discharge cycles. The electronic state of the Ni-rich cathode indicates that the antibonding hybrid orbital of the transition metal 3d–O 2p corresponds to the lowest unoccupied molecular orbital energy level, that is, the hole, and lies near the highest occupied molecular orbital energy level of the electrolyte. In addition, the hole concentration in the charged state was found to be significantly increased, in comparison to other active materials, which promotes oxidization of the electrolyte.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3j_kBbk02SdccZWm10FoQPS-TLzal3SzJCvbfm9oqePA0M7wfDA9Ct5RMKCnpPeg02fRaT4jOp3w4QyMqWVlUXIjz351Xl-gqpQ0hghHKRmhTw9AGY_Fsa_UQw3Y_WLzoBhv7FpLF8xB3MPjQYejMH9P605ujsrK6hc6nHXYh4hdfvHrd4p_iFeQyD9t0jS5cHvbmNMfofT57q5-L5fppUT8uC2B8OhRKKslAUee0cYIrLqkBx5SYKgnMGsWNKyunpCaWGqZoZTlIobKlzEnBxogce3UMKUXrmj76HcR9Q0lzYNVkVs2BVXNilSN3x8i3Ej5ilx_83_4FWohwzw</recordid><startdate>20200430</startdate><enddate>20200430</enddate><creator>Takahashi, Ikuma</creator><creator>Kiuchi, Hisao</creator><creator>Ohma, Atsushi</creator><creator>Fukunaga, Toshiharu</creator><creator>Matsubara, Eiichiro</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8217-7058</orcidid></search><sort><creationdate>20200430</creationdate><title>Cathode Electrolyte Interphase Formation and Electrolyte Oxidation Mechanism for Ni-Rich Cathode Materials</title><author>Takahashi, Ikuma ; Kiuchi, Hisao ; Ohma, Atsushi ; Fukunaga, Toshiharu ; Matsubara, Eiichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-b9b93ab1ffcdf54b491daf3b56b9a3edb4df27fb9c0e1d3b17e4a95bf3b2b9353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Ikuma</creatorcontrib><creatorcontrib>Kiuchi, Hisao</creatorcontrib><creatorcontrib>Ohma, Atsushi</creatorcontrib><creatorcontrib>Fukunaga, Toshiharu</creatorcontrib><creatorcontrib>Matsubara, Eiichiro</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Ikuma</au><au>Kiuchi, Hisao</au><au>Ohma, Atsushi</au><au>Fukunaga, Toshiharu</au><au>Matsubara, Eiichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode Electrolyte Interphase Formation and Electrolyte Oxidation Mechanism for Ni-Rich Cathode Materials</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-04-30</date><risdate>2020</risdate><volume>124</volume><issue>17</issue><spage>9243</spage><epage>9248</epage><pages>9243-9248</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Herein, we investigate the formation of a cathode electrolyte interphase (CEI) by electrolyte oxidation on a LiNi x M1–x O2 (x &gt; 0.5; M, transition metal) layered oxide (Ni-rich) cathode and compare this phenomenon with a Li-rich layered oxide (Li-rich) cathode. Our investigations focused on two electrochemical properties, the potential and kinetics of electrolyte oxidation, studied using hard X-ray photoelectron spectroscopy (HAXPES), soft X-ray absorption spectroscopy, and density functional theory calculations. HAXPES revealed that a thicker CEI formed on the Ni-rich cathode compared to that on the Li-rich cathode, despite the operation potential of the Ni-rich cathode being lower than that of the Li-rich cathode. Thus, the Ni-rich cathode induces the CEI formation through active oxidation of the electrolyte during charge–discharge cycles. The electronic state of the Ni-rich cathode indicates that the antibonding hybrid orbital of the transition metal 3d–O 2p corresponds to the lowest unoccupied molecular orbital energy level, that is, the hole, and lies near the highest occupied molecular orbital energy level of the electrolyte. In addition, the hole concentration in the charged state was found to be significantly increased, in comparison to other active materials, which promotes oxidization of the electrolyte.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c02198</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8217-7058</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-04, Vol.124 (17), p.9243-9248
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_0c02198
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Cathode Electrolyte Interphase Formation and Electrolyte Oxidation Mechanism for Ni-Rich Cathode Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%20Electrolyte%20Interphase%20Formation%20and%20Electrolyte%20Oxidation%20Mechanism%20for%20Ni-Rich%20Cathode%20Materials&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Takahashi,%20Ikuma&rft.date=2020-04-30&rft.volume=124&rft.issue=17&rft.spage=9243&rft.epage=9248&rft.pages=9243-9248&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c02198&rft_dat=%3Cacs_cross%3Ee85238145%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a346t-b9b93ab1ffcdf54b491daf3b56b9a3edb4df27fb9c0e1d3b17e4a95bf3b2b9353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true