Loading…
Synthesis of Graphene Nanoribbons on a Kinked Au Surface: Revealing the Frontier Valence Band at the Brillouin Zone Center
Graphene nanoribbons (GNRs) can be synthesized with atomic precision through on-surface chemistry of self-assembled organic precursors on metal surfaces. Here, we examine the growth of seven-armchair GNRs (7-AGNRs) on the Au(16 14 15) vicinal surface, namely, a surface vicinal to Au(111) that featur...
Saved in:
Published in: | Journal of physical chemistry. C 2020-07, Vol.124 (28), p.15474-15480 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene nanoribbons (GNRs) can be synthesized with atomic precision through on-surface chemistry of self-assembled organic precursors on metal surfaces. Here, we examine the growth of seven-armchair GNRs (7-AGNRs) on the Au(16 14 15) vicinal surface, namely, a surface vicinal to Au(111) that features kinked steps. During the thermal activation of the polymerization and cyclodehydrogenation processes that produce the GNRs, the kinked substrate undergoes a strong step-edge reshaping, accompanied by a massive missing-row reconstruction within (111) terraces that aligns GNRs preferentially along two equivalent [11̅0] directions. Using angle-resolved photoemission, we are able to detect the occupied frontier band of the 7-AGNR at the center of the first Brillouin zone, as predicted by theoretical calculations. This allows to unambiguously determine the relevant 7-AGNR band properties, namely, energy and effective mass. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.0c02801 |