Loading…

Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries

Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2021-10, Vol.125 (39), p.21352-21358
Main Authors: Xu, Shangqian, Liang, Jiechun, Yu, Yunduo, Liu, Rulin, Xu, Yao, Zhu, Xi, Zhao, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3
cites cdi_FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3
container_end_page 21358
container_issue 39
container_start_page 21352
container_title Journal of physical chemistry. C
container_volume 125
creator Xu, Shangqian
Liang, Jiechun
Yu, Yunduo
Liu, Rulin
Xu, Yao
Zhu, Xi
Zhao, Yu
description Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials, the balance between redox potential and specific capacity can be broken to increase energy density. In this work, we use machine learning to train materials with different redox potentials to predict novel polymers with ideal potentials. In situ computer vision and infrared spectroscopy monitor the reaction in real time. We also theoretically studied the concentration-dependent yields by providing a depletion-force model. This work provides a new solution to material research flow, including training, prediction, synthesis, examination, and analysis, accelerating high-capacity organic cathode material discovery.
doi_str_mv 10.1021/acs.jpcc.1c06821
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c06821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b538749637</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbvHvcHmDq7SbrJsdaPCi0FUa9xMpkkW2pSdqPQf29iizdPM_C87zA8QlwrmCjQ6hbJTzY7ookimCZanYiRSkMdmCiOT__2yJyLC-83AHEIKhyJjxVSbRuWS0bX2KYKZt5b33Eh762n9pvdXralXNiqDt7bbYcVy7WrsLEkV9ixs7j1smydfGGq0VWM-ZblHXYDY38pzso-wVfHORZvjw-v80WwXD89z2fLAMNo2gWFiU2CccSU5ElhdFLkYBALAixSpSkCE5UQp6VSOk2QTMoAPTSghwKHYwGHu-Ra7x2X2c7ZT3T7TEE2GMp6Q9lgKDsa6is3h8ovab9c0z_4f_wHOnprTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Xu, Shangqian ; Liang, Jiechun ; Yu, Yunduo ; Liu, Rulin ; Xu, Yao ; Zhu, Xi ; Zhao, Yu</creator><creatorcontrib>Xu, Shangqian ; Liang, Jiechun ; Yu, Yunduo ; Liu, Rulin ; Xu, Yao ; Zhu, Xi ; Zhao, Yu</creatorcontrib><description>Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials, the balance between redox potential and specific capacity can be broken to increase energy density. In this work, we use machine learning to train materials with different redox potentials to predict novel polymers with ideal potentials. In situ computer vision and infrared spectroscopy monitor the reaction in real time. We also theoretically studied the concentration-dependent yields by providing a depletion-force model. This work provides a new solution to material research flow, including training, prediction, synthesis, examination, and analysis, accelerating high-capacity organic cathode material discovery.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c06821</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2021-10, Vol.125 (39), p.21352-21358</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3</citedby><cites>FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3</cites><orcidid>0000-0002-6184-2530 ; 0000-0002-2496-4053 ; 0000-0002-7363-1239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Shangqian</creatorcontrib><creatorcontrib>Liang, Jiechun</creatorcontrib><creatorcontrib>Yu, Yunduo</creatorcontrib><creatorcontrib>Liu, Rulin</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Zhu, Xi</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><title>Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials, the balance between redox potential and specific capacity can be broken to increase energy density. In this work, we use machine learning to train materials with different redox potentials to predict novel polymers with ideal potentials. In situ computer vision and infrared spectroscopy monitor the reaction in real time. We also theoretically studied the concentration-dependent yields by providing a depletion-force model. This work provides a new solution to material research flow, including training, prediction, synthesis, examination, and analysis, accelerating high-capacity organic cathode material discovery.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbvHvcHmDq7SbrJsdaPCi0FUa9xMpkkW2pSdqPQf29iizdPM_C87zA8QlwrmCjQ6hbJTzY7ookimCZanYiRSkMdmCiOT__2yJyLC-83AHEIKhyJjxVSbRuWS0bX2KYKZt5b33Eh762n9pvdXralXNiqDt7bbYcVy7WrsLEkV9ixs7j1smydfGGq0VWM-ZblHXYDY38pzso-wVfHORZvjw-v80WwXD89z2fLAMNo2gWFiU2CccSU5ElhdFLkYBALAixSpSkCE5UQp6VSOk2QTMoAPTSghwKHYwGHu-Ra7x2X2c7ZT3T7TEE2GMp6Q9lgKDsa6is3h8ovab9c0z_4f_wHOnprTg</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Xu, Shangqian</creator><creator>Liang, Jiechun</creator><creator>Yu, Yunduo</creator><creator>Liu, Rulin</creator><creator>Xu, Yao</creator><creator>Zhu, Xi</creator><creator>Zhao, Yu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6184-2530</orcidid><orcidid>https://orcid.org/0000-0002-2496-4053</orcidid><orcidid>https://orcid.org/0000-0002-7363-1239</orcidid></search><sort><creationdate>20211007</creationdate><title>Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries</title><author>Xu, Shangqian ; Liang, Jiechun ; Yu, Yunduo ; Liu, Rulin ; Xu, Yao ; Zhu, Xi ; Zhao, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shangqian</creatorcontrib><creatorcontrib>Liang, Jiechun</creatorcontrib><creatorcontrib>Yu, Yunduo</creatorcontrib><creatorcontrib>Liu, Rulin</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Zhu, Xi</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shangqian</au><au>Liang, Jiechun</au><au>Yu, Yunduo</au><au>Liu, Rulin</au><au>Xu, Yao</au><au>Zhu, Xi</au><au>Zhao, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-10-07</date><risdate>2021</risdate><volume>125</volume><issue>39</issue><spage>21352</spage><epage>21358</epage><pages>21352-21358</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials, the balance between redox potential and specific capacity can be broken to increase energy density. In this work, we use machine learning to train materials with different redox potentials to predict novel polymers with ideal potentials. In situ computer vision and infrared spectroscopy monitor the reaction in real time. We also theoretically studied the concentration-dependent yields by providing a depletion-force model. This work provides a new solution to material research flow, including training, prediction, synthesis, examination, and analysis, accelerating high-capacity organic cathode material discovery.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c06821</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6184-2530</orcidid><orcidid>https://orcid.org/0000-0002-2496-4053</orcidid><orcidid>https://orcid.org/0000-0002-7363-1239</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-10, Vol.125 (39), p.21352-21358
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_1c06821
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Energy Conversion and Storage
title Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Assisted%20Discovery%20of%20High-Voltage%20Organic%20Materials%20for%20Rechargeable%20Batteries&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Xu,%20Shangqian&rft.date=2021-10-07&rft.volume=125&rft.issue=39&rft.spage=21352&rft.epage=21358&rft.pages=21352-21358&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c06821&rft_dat=%3Cacs_cross%3Eb538749637%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true