Loading…
Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries
Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials,...
Saved in:
Published in: | Journal of physical chemistry. C 2021-10, Vol.125 (39), p.21352-21358 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3 |
---|---|
cites | cdi_FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3 |
container_end_page | 21358 |
container_issue | 39 |
container_start_page | 21352 |
container_title | Journal of physical chemistry. C |
container_volume | 125 |
creator | Xu, Shangqian Liang, Jiechun Yu, Yunduo Liu, Rulin Xu, Yao Zhu, Xi Zhao, Yu |
description | Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials, the balance between redox potential and specific capacity can be broken to increase energy density. In this work, we use machine learning to train materials with different redox potentials to predict novel polymers with ideal potentials. In situ computer vision and infrared spectroscopy monitor the reaction in real time. We also theoretically studied the concentration-dependent yields by providing a depletion-force model. This work provides a new solution to material research flow, including training, prediction, synthesis, examination, and analysis, accelerating high-capacity organic cathode material discovery. |
doi_str_mv | 10.1021/acs.jpcc.1c06821 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c06821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b538749637</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbvHvcHmDq7SbrJsdaPCi0FUa9xMpkkW2pSdqPQf29iizdPM_C87zA8QlwrmCjQ6hbJTzY7ookimCZanYiRSkMdmCiOT__2yJyLC-83AHEIKhyJjxVSbRuWS0bX2KYKZt5b33Eh762n9pvdXralXNiqDt7bbYcVy7WrsLEkV9ixs7j1smydfGGq0VWM-ZblHXYDY38pzso-wVfHORZvjw-v80WwXD89z2fLAMNo2gWFiU2CccSU5ElhdFLkYBALAixSpSkCE5UQp6VSOk2QTMoAPTSghwKHYwGHu-Ra7x2X2c7ZT3T7TEE2GMp6Q9lgKDsa6is3h8ovab9c0z_4f_wHOnprTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Xu, Shangqian ; Liang, Jiechun ; Yu, Yunduo ; Liu, Rulin ; Xu, Yao ; Zhu, Xi ; Zhao, Yu</creator><creatorcontrib>Xu, Shangqian ; Liang, Jiechun ; Yu, Yunduo ; Liu, Rulin ; Xu, Yao ; Zhu, Xi ; Zhao, Yu</creatorcontrib><description>Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials, the balance between redox potential and specific capacity can be broken to increase energy density. In this work, we use machine learning to train materials with different redox potentials to predict novel polymers with ideal potentials. In situ computer vision and infrared spectroscopy monitor the reaction in real time. We also theoretically studied the concentration-dependent yields by providing a depletion-force model. This work provides a new solution to material research flow, including training, prediction, synthesis, examination, and analysis, accelerating high-capacity organic cathode material discovery.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c06821</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2021-10, Vol.125 (39), p.21352-21358</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3</citedby><cites>FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3</cites><orcidid>0000-0002-6184-2530 ; 0000-0002-2496-4053 ; 0000-0002-7363-1239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Shangqian</creatorcontrib><creatorcontrib>Liang, Jiechun</creatorcontrib><creatorcontrib>Yu, Yunduo</creatorcontrib><creatorcontrib>Liu, Rulin</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Zhu, Xi</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><title>Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials, the balance between redox potential and specific capacity can be broken to increase energy density. In this work, we use machine learning to train materials with different redox potentials to predict novel polymers with ideal potentials. In situ computer vision and infrared spectroscopy monitor the reaction in real time. We also theoretically studied the concentration-dependent yields by providing a depletion-force model. This work provides a new solution to material research flow, including training, prediction, synthesis, examination, and analysis, accelerating high-capacity organic cathode material discovery.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbvHvcHmDq7SbrJsdaPCi0FUa9xMpkkW2pSdqPQf29iizdPM_C87zA8QlwrmCjQ6hbJTzY7ookimCZanYiRSkMdmCiOT__2yJyLC-83AHEIKhyJjxVSbRuWS0bX2KYKZt5b33Eh762n9pvdXralXNiqDt7bbYcVy7WrsLEkV9ixs7j1smydfGGq0VWM-ZblHXYDY38pzso-wVfHORZvjw-v80WwXD89z2fLAMNo2gWFiU2CccSU5ElhdFLkYBALAixSpSkCE5UQp6VSOk2QTMoAPTSghwKHYwGHu-Ra7x2X2c7ZT3T7TEE2GMp6Q9lgKDsa6is3h8ovab9c0z_4f_wHOnprTg</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Xu, Shangqian</creator><creator>Liang, Jiechun</creator><creator>Yu, Yunduo</creator><creator>Liu, Rulin</creator><creator>Xu, Yao</creator><creator>Zhu, Xi</creator><creator>Zhao, Yu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6184-2530</orcidid><orcidid>https://orcid.org/0000-0002-2496-4053</orcidid><orcidid>https://orcid.org/0000-0002-7363-1239</orcidid></search><sort><creationdate>20211007</creationdate><title>Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries</title><author>Xu, Shangqian ; Liang, Jiechun ; Yu, Yunduo ; Liu, Rulin ; Xu, Yao ; Zhu, Xi ; Zhao, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shangqian</creatorcontrib><creatorcontrib>Liang, Jiechun</creatorcontrib><creatorcontrib>Yu, Yunduo</creatorcontrib><creatorcontrib>Liu, Rulin</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Zhu, Xi</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shangqian</au><au>Liang, Jiechun</au><au>Yu, Yunduo</au><au>Liu, Rulin</au><au>Xu, Yao</au><au>Zhu, Xi</au><au>Zhao, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-10-07</date><risdate>2021</risdate><volume>125</volume><issue>39</issue><spage>21352</spage><epage>21358</epage><pages>21352-21358</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Organic redox compounds are rich in elements and structural diversity, which are an ideal choice for lithium-ion batteries. However, most organic cathode materials show a trade-off between specific capacity and voltage, limiting energy density. By increasing the redox potential of cathode materials, the balance between redox potential and specific capacity can be broken to increase energy density. In this work, we use machine learning to train materials with different redox potentials to predict novel polymers with ideal potentials. In situ computer vision and infrared spectroscopy monitor the reaction in real time. We also theoretically studied the concentration-dependent yields by providing a depletion-force model. This work provides a new solution to material research flow, including training, prediction, synthesis, examination, and analysis, accelerating high-capacity organic cathode material discovery.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c06821</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6184-2530</orcidid><orcidid>https://orcid.org/0000-0002-2496-4053</orcidid><orcidid>https://orcid.org/0000-0002-7363-1239</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2021-10, Vol.125 (39), p.21352-21358 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_1c06821 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Energy Conversion and Storage |
title | Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Assisted%20Discovery%20of%20High-Voltage%20Organic%20Materials%20for%20Rechargeable%20Batteries&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Xu,%20Shangqian&rft.date=2021-10-07&rft.volume=125&rft.issue=39&rft.spage=21352&rft.epage=21358&rft.pages=21352-21358&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c06821&rft_dat=%3Cacs_cross%3Eb538749637%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a346t-d7578a54ec8b8d728db07aadc0ad912c4074f059f11298ac79e00c0a7028b8de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |