Loading…

Thermodynamic Analysis of Li-Intercalated Graphite by First-Principles Calculations with Vibrational and Configurational Contributions

Li-ion batteries require quantitative analysis of the crystal structure change in the graphite electrode during charge/discharge reactions to improve their performance. Herein, we investigated the thermodynamically stable phases of Li x C6 and their structure transitions by first-principles free-ene...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2021-12, Vol.125 (51), p.27891-27900
Main Authors: Haruyama, Jun, Takagi, Shigeharu, Shimoda, Keiji, Watanabe, Iwao, Sodeyama, Keitaro, Ikeshoji, Tamio, Otani, Minoru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a280t-b20dc1c6a6db0e26280238b3a2053299079ee9eebb74bf52bc73608c9afd78053
cites cdi_FETCH-LOGICAL-a280t-b20dc1c6a6db0e26280238b3a2053299079ee9eebb74bf52bc73608c9afd78053
container_end_page 27900
container_issue 51
container_start_page 27891
container_title Journal of physical chemistry. C
container_volume 125
creator Haruyama, Jun
Takagi, Shigeharu
Shimoda, Keiji
Watanabe, Iwao
Sodeyama, Keitaro
Ikeshoji, Tamio
Otani, Minoru
description Li-ion batteries require quantitative analysis of the crystal structure change in the graphite electrode during charge/discharge reactions to improve their performance. Herein, we investigated the thermodynamically stable phases of Li x C6 and their structure transitions by first-principles free-energy calculations including the vibrational free energy and configurational entropy. We considered the in-plane configurations of six structures with different Li concentrations in the Li layer and the interlayer configurations of AA, AB, and mixed stacks for eight stages. The contributions of the vibrational free energy and configurational entropy were estimated to be less than −20 meV/Li x C6 for 0 ≤ x ≤ 1/3. The formation free energy predicts that the AA-Li/9C-s2 structure with x = 1/3 (LiC18) and AB-stack phase with 0 ≤ x ≤ 0.05 (C–LiC120) are stable. The formation free energy also suggests the stable phase of the mixed-stack structures for intermediate Li compositions of 0.05 < x < 1/3 (LiC120–LiC18). The AB-stack–mixed-stack transition at x ≈ 0.05 obtained herein is consistent with recent X-ray diffraction observations. We also discuss the relation between the computational entropy change in Li x C6 and the results of electrochemical measurements, which are in quantitative agreement, especially with the entropy jump at x ≈ 0.05.
doi_str_mv 10.1021/acs.jpcc.1c08992
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c08992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g56149322</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-b20dc1c6a6db0e26280238b3a2053299079ee9eebb74bf52bc73608c9afd78053</originalsourceid><addsrcrecordid>eNp1UMtqwzAQFKWFpmnvPeoDaleS44eOwTQPCLSHtFezkuVGwZGNJFP8A_3uKg9yKyzszu7MsjsIPVMSU8LoK0gX73spYypJwTm7QRPKExblszS9vdaz_B49OLcnJE0ITSbod7tT9tDVo4GDlnhuoB2ddrhr8EZHa-OVldCCVzVeWuh32issRrzQ1vnow2ojdd8qh0to5RB4ujMO_2i_w19a2BOGFoOpcdmZRn8P117A3moxnCSP6K6B1qmnS56iz8XbtlxFm_flupxvImAF8ZFgpJZUZpDVgiiWhSZLCpEAC_8wzknOlQohRD4TTcqEzJOMFJJDU-dF4EwROe-VtnPOqqbqrT6AHStKqqOPVfCxOvpYXXwMkpez5DTpBhuOd__T_wAGT3q8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic Analysis of Li-Intercalated Graphite by First-Principles Calculations with Vibrational and Configurational Contributions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Haruyama, Jun ; Takagi, Shigeharu ; Shimoda, Keiji ; Watanabe, Iwao ; Sodeyama, Keitaro ; Ikeshoji, Tamio ; Otani, Minoru</creator><creatorcontrib>Haruyama, Jun ; Takagi, Shigeharu ; Shimoda, Keiji ; Watanabe, Iwao ; Sodeyama, Keitaro ; Ikeshoji, Tamio ; Otani, Minoru</creatorcontrib><description>Li-ion batteries require quantitative analysis of the crystal structure change in the graphite electrode during charge/discharge reactions to improve their performance. Herein, we investigated the thermodynamically stable phases of Li x C6 and their structure transitions by first-principles free-energy calculations including the vibrational free energy and configurational entropy. We considered the in-plane configurations of six structures with different Li concentrations in the Li layer and the interlayer configurations of AA, AB, and mixed stacks for eight stages. The contributions of the vibrational free energy and configurational entropy were estimated to be less than −20 meV/Li x C6 for 0 ≤ x ≤ 1/3. The formation free energy predicts that the AA-Li/9C-s2 structure with x = 1/3 (LiC18) and AB-stack phase with 0 ≤ x ≤ 0.05 (C–LiC120) are stable. The formation free energy also suggests the stable phase of the mixed-stack structures for intermediate Li compositions of 0.05 &lt; x &lt; 1/3 (LiC120–LiC18). The AB-stack–mixed-stack transition at x ≈ 0.05 obtained herein is consistent with recent X-ray diffraction observations. We also discuss the relation between the computational entropy change in Li x C6 and the results of electrochemical measurements, which are in quantitative agreement, especially with the entropy jump at x ≈ 0.05.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c08992</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2021-12, Vol.125 (51), p.27891-27900</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-b20dc1c6a6db0e26280238b3a2053299079ee9eebb74bf52bc73608c9afd78053</citedby><cites>FETCH-LOGICAL-a280t-b20dc1c6a6db0e26280238b3a2053299079ee9eebb74bf52bc73608c9afd78053</cites><orcidid>0000-0003-2310-4104 ; 0000-0002-9228-0729 ; 0000-0003-4600-3437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haruyama, Jun</creatorcontrib><creatorcontrib>Takagi, Shigeharu</creatorcontrib><creatorcontrib>Shimoda, Keiji</creatorcontrib><creatorcontrib>Watanabe, Iwao</creatorcontrib><creatorcontrib>Sodeyama, Keitaro</creatorcontrib><creatorcontrib>Ikeshoji, Tamio</creatorcontrib><creatorcontrib>Otani, Minoru</creatorcontrib><title>Thermodynamic Analysis of Li-Intercalated Graphite by First-Principles Calculations with Vibrational and Configurational Contributions</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Li-ion batteries require quantitative analysis of the crystal structure change in the graphite electrode during charge/discharge reactions to improve their performance. Herein, we investigated the thermodynamically stable phases of Li x C6 and their structure transitions by first-principles free-energy calculations including the vibrational free energy and configurational entropy. We considered the in-plane configurations of six structures with different Li concentrations in the Li layer and the interlayer configurations of AA, AB, and mixed stacks for eight stages. The contributions of the vibrational free energy and configurational entropy were estimated to be less than −20 meV/Li x C6 for 0 ≤ x ≤ 1/3. The formation free energy predicts that the AA-Li/9C-s2 structure with x = 1/3 (LiC18) and AB-stack phase with 0 ≤ x ≤ 0.05 (C–LiC120) are stable. The formation free energy also suggests the stable phase of the mixed-stack structures for intermediate Li compositions of 0.05 &lt; x &lt; 1/3 (LiC120–LiC18). The AB-stack–mixed-stack transition at x ≈ 0.05 obtained herein is consistent with recent X-ray diffraction observations. We also discuss the relation between the computational entropy change in Li x C6 and the results of electrochemical measurements, which are in quantitative agreement, especially with the entropy jump at x ≈ 0.05.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtqwzAQFKWFpmnvPeoDaleS44eOwTQPCLSHtFezkuVGwZGNJFP8A_3uKg9yKyzszu7MsjsIPVMSU8LoK0gX73spYypJwTm7QRPKExblszS9vdaz_B49OLcnJE0ITSbod7tT9tDVo4GDlnhuoB2ddrhr8EZHa-OVldCCVzVeWuh32issRrzQ1vnow2ojdd8qh0to5RB4ujMO_2i_w19a2BOGFoOpcdmZRn8P117A3moxnCSP6K6B1qmnS56iz8XbtlxFm_flupxvImAF8ZFgpJZUZpDVgiiWhSZLCpEAC_8wzknOlQohRD4TTcqEzJOMFJJDU-dF4EwROe-VtnPOqqbqrT6AHStKqqOPVfCxOvpYXXwMkpez5DTpBhuOd__T_wAGT3q8</recordid><startdate>20211230</startdate><enddate>20211230</enddate><creator>Haruyama, Jun</creator><creator>Takagi, Shigeharu</creator><creator>Shimoda, Keiji</creator><creator>Watanabe, Iwao</creator><creator>Sodeyama, Keitaro</creator><creator>Ikeshoji, Tamio</creator><creator>Otani, Minoru</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2310-4104</orcidid><orcidid>https://orcid.org/0000-0002-9228-0729</orcidid><orcidid>https://orcid.org/0000-0003-4600-3437</orcidid></search><sort><creationdate>20211230</creationdate><title>Thermodynamic Analysis of Li-Intercalated Graphite by First-Principles Calculations with Vibrational and Configurational Contributions</title><author>Haruyama, Jun ; Takagi, Shigeharu ; Shimoda, Keiji ; Watanabe, Iwao ; Sodeyama, Keitaro ; Ikeshoji, Tamio ; Otani, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-b20dc1c6a6db0e26280238b3a2053299079ee9eebb74bf52bc73608c9afd78053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haruyama, Jun</creatorcontrib><creatorcontrib>Takagi, Shigeharu</creatorcontrib><creatorcontrib>Shimoda, Keiji</creatorcontrib><creatorcontrib>Watanabe, Iwao</creatorcontrib><creatorcontrib>Sodeyama, Keitaro</creatorcontrib><creatorcontrib>Ikeshoji, Tamio</creatorcontrib><creatorcontrib>Otani, Minoru</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haruyama, Jun</au><au>Takagi, Shigeharu</au><au>Shimoda, Keiji</au><au>Watanabe, Iwao</au><au>Sodeyama, Keitaro</au><au>Ikeshoji, Tamio</au><au>Otani, Minoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic Analysis of Li-Intercalated Graphite by First-Principles Calculations with Vibrational and Configurational Contributions</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-12-30</date><risdate>2021</risdate><volume>125</volume><issue>51</issue><spage>27891</spage><epage>27900</epage><pages>27891-27900</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Li-ion batteries require quantitative analysis of the crystal structure change in the graphite electrode during charge/discharge reactions to improve their performance. Herein, we investigated the thermodynamically stable phases of Li x C6 and their structure transitions by first-principles free-energy calculations including the vibrational free energy and configurational entropy. We considered the in-plane configurations of six structures with different Li concentrations in the Li layer and the interlayer configurations of AA, AB, and mixed stacks for eight stages. The contributions of the vibrational free energy and configurational entropy were estimated to be less than −20 meV/Li x C6 for 0 ≤ x ≤ 1/3. The formation free energy predicts that the AA-Li/9C-s2 structure with x = 1/3 (LiC18) and AB-stack phase with 0 ≤ x ≤ 0.05 (C–LiC120) are stable. The formation free energy also suggests the stable phase of the mixed-stack structures for intermediate Li compositions of 0.05 &lt; x &lt; 1/3 (LiC120–LiC18). The AB-stack–mixed-stack transition at x ≈ 0.05 obtained herein is consistent with recent X-ray diffraction observations. We also discuss the relation between the computational entropy change in Li x C6 and the results of electrochemical measurements, which are in quantitative agreement, especially with the entropy jump at x ≈ 0.05.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c08992</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2310-4104</orcidid><orcidid>https://orcid.org/0000-0002-9228-0729</orcidid><orcidid>https://orcid.org/0000-0003-4600-3437</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-12, Vol.125 (51), p.27891-27900
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_1c08992
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Energy Conversion and Storage
title Thermodynamic Analysis of Li-Intercalated Graphite by First-Principles Calculations with Vibrational and Configurational Contributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20Analysis%20of%20Li-Intercalated%20Graphite%20by%20First-Principles%20Calculations%20with%20Vibrational%20and%20Configurational%20Contributions&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Haruyama,%20Jun&rft.date=2021-12-30&rft.volume=125&rft.issue=51&rft.spage=27891&rft.epage=27900&rft.pages=27891-27900&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c08992&rft_dat=%3Cacs_cross%3Eg56149322%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a280t-b20dc1c6a6db0e26280238b3a2053299079ee9eebb74bf52bc73608c9afd78053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true