Loading…
Electrochemical Detection of Isolated Nanoscale Defects in 2D Transition Metal Dichalcogenides
We show that nanometer and sub-nanometer scale defects in two-dimensional transition metal dichalcogenides can be detected electrochemically using scanning electrochemical cell microscopy (SECCM). We detect isolated anomalous electrochemical responses for the hexaammineruthenium ([Ru(NH3)6]3+/2+) r...
Saved in:
Published in: | Journal of physical chemistry. C 2022-07, Vol.126 (28), p.11636-11641 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that nanometer and sub-nanometer scale defects in two-dimensional transition metal dichalcogenides can be detected electrochemically using scanning electrochemical cell microscopy (SECCM). We detect isolated anomalous electrochemical responses for the hexaammineruthenium ([Ru(NH3)6]3+/2+) redox couple on mono-, bi-, and trilayer regions of mechanically exfoliated MoS2. These anomalous sample points display faster electrochemical kinetics, with a diffusion-limited current plateau, compared to the surrounding sample points. The analysis of the electrochemical current suggests that the defects are equivalent to disk-shaped defects with radii of tens of nanometers, or to one-dimensional defects with nanometer to sub-nanometer widths. These results demonstrate that we can effectively isolate and electrochemically amplify the response from individual defects on a sample surface using SECCM, revealing features below the optical diffraction limit that would normally require high-resolution electron microscopy or scanning tunneling microscopy to detect. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.2c01656 |