Loading…

Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides

The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2024-07, Vol.128 (27), p.11176-11182
Main Authors: Choi, Jungwoo, Choi, Hyuk, Lee, Ju Hyeok, Kang, Eunji, Shin, Kihyun, Lee, Hyuck Mo, Kim, Hyun You
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3
container_end_page 11182
container_issue 27
container_start_page 11176
container_title Journal of physical chemistry. C
container_volume 128
creator Choi, Jungwoo
Choi, Hyuk
Lee, Ju Hyeok
Kang, Eunji
Shin, Kihyun
Lee, Hyuck Mo
Kim, Hyun You
description The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized at the CeO x –TiO2 interfaces on TiO2 particles (ACT catalyst). We constructed two energetic landscapes of the WGSR (redox and associative mechanisms), concurrently presenting the H2 formation as a rate-determining step. Electronic analysis data showed that the charge state of the oxygen ions participating in WGSR strongly correlates with the oxygen vacancy formation energy (OVF) and hydrogen binding energy (ΔE H), directly scaling the CO oxidation power and the H2 production ability. Further expansion toward various Au on oxide–oxide combinations confirmed that the delicate control of metal-oxide-oxide interfaces with optimized local electronic structures expresses the rational design of a WGSR catalyst.
doi_str_mv 10.1021/acs.jpcc.4c01559
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_4c01559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d164328234</sourcerecordid><originalsourceid>FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3</originalsourceid><addsrcrecordid>eNp1kN1KwzAYhoMoOKfnHuYC7MxP05_DUnQKGwOneFjSNHUZbVOSVKxHuwfv0Csxc8Mzj94P3h8-HgCuMZphRPAtF3a27YWYhQJhxtITMMEpJUEcMnb6d4fxObiwdosQowjTCdjlunNGN43q3uBSig3vlG2hrqHbSPjKnTTfu685t3C9UbWDT5ILp3QHMy_vyo0w544346esYDnCbIBrv9RImDnd-tLQ99o4b_rKcmicErrtdSc7B1cfqpL2EpzVvLHy6qhT8HJ_95w_BIvV_DHPFgHHEXUBjhAKSRxTghFKIk6rGEeE0ITwElW0TtIa05iwMimTGAvGBYlKkvIyRahKfX4K0GFXGG2tkXXRG9VyMxYYFXuChSdY7AkWR4K-cnOo_Dp6MJ1_8P_4D7y2drQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Choi, Jungwoo ; Choi, Hyuk ; Lee, Ju Hyeok ; Kang, Eunji ; Shin, Kihyun ; Lee, Hyuck Mo ; Kim, Hyun You</creator><creatorcontrib>Choi, Jungwoo ; Choi, Hyuk ; Lee, Ju Hyeok ; Kang, Eunji ; Shin, Kihyun ; Lee, Hyuck Mo ; Kim, Hyun You</creatorcontrib><description>The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized at the CeO x –TiO2 interfaces on TiO2 particles (ACT catalyst). We constructed two energetic landscapes of the WGSR (redox and associative mechanisms), concurrently presenting the H2 formation as a rate-determining step. Electronic analysis data showed that the charge state of the oxygen ions participating in WGSR strongly correlates with the oxygen vacancy formation energy (OVF) and hydrogen binding energy (ΔE H), directly scaling the CO oxidation power and the H2 production ability. Further expansion toward various Au on oxide–oxide combinations confirmed that the delicate control of metal-oxide-oxide interfaces with optimized local electronic structures expresses the rational design of a WGSR catalyst.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c01559</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2024-07, Vol.128 (27), p.11176-11182</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3</cites><orcidid>0000-0002-7899-2631 ; 0000-0003-4556-6692 ; 0000-0001-8105-1640 ; 0000-0003-3988-6331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Choi, Jungwoo</creatorcontrib><creatorcontrib>Choi, Hyuk</creatorcontrib><creatorcontrib>Lee, Ju Hyeok</creatorcontrib><creatorcontrib>Kang, Eunji</creatorcontrib><creatorcontrib>Shin, Kihyun</creatorcontrib><creatorcontrib>Lee, Hyuck Mo</creatorcontrib><creatorcontrib>Kim, Hyun You</creatorcontrib><title>Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized at the CeO x –TiO2 interfaces on TiO2 particles (ACT catalyst). We constructed two energetic landscapes of the WGSR (redox and associative mechanisms), concurrently presenting the H2 formation as a rate-determining step. Electronic analysis data showed that the charge state of the oxygen ions participating in WGSR strongly correlates with the oxygen vacancy formation energy (OVF) and hydrogen binding energy (ΔE H), directly scaling the CO oxidation power and the H2 production ability. Further expansion toward various Au on oxide–oxide combinations confirmed that the delicate control of metal-oxide-oxide interfaces with optimized local electronic structures expresses the rational design of a WGSR catalyst.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kN1KwzAYhoMoOKfnHuYC7MxP05_DUnQKGwOneFjSNHUZbVOSVKxHuwfv0Csxc8Mzj94P3h8-HgCuMZphRPAtF3a27YWYhQJhxtITMMEpJUEcMnb6d4fxObiwdosQowjTCdjlunNGN43q3uBSig3vlG2hrqHbSPjKnTTfu685t3C9UbWDT5ILp3QHMy_vyo0w544346esYDnCbIBrv9RImDnd-tLQ99o4b_rKcmicErrtdSc7B1cfqpL2EpzVvLHy6qhT8HJ_95w_BIvV_DHPFgHHEXUBjhAKSRxTghFKIk6rGEeE0ITwElW0TtIa05iwMimTGAvGBYlKkvIyRahKfX4K0GFXGG2tkXXRG9VyMxYYFXuChSdY7AkWR4K-cnOo_Dp6MJ1_8P_4D7y2drQ</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Choi, Jungwoo</creator><creator>Choi, Hyuk</creator><creator>Lee, Ju Hyeok</creator><creator>Kang, Eunji</creator><creator>Shin, Kihyun</creator><creator>Lee, Hyuck Mo</creator><creator>Kim, Hyun You</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7899-2631</orcidid><orcidid>https://orcid.org/0000-0003-4556-6692</orcidid><orcidid>https://orcid.org/0000-0001-8105-1640</orcidid><orcidid>https://orcid.org/0000-0003-3988-6331</orcidid></search><sort><creationdate>20240711</creationdate><title>Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides</title><author>Choi, Jungwoo ; Choi, Hyuk ; Lee, Ju Hyeok ; Kang, Eunji ; Shin, Kihyun ; Lee, Hyuck Mo ; Kim, Hyun You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jungwoo</creatorcontrib><creatorcontrib>Choi, Hyuk</creatorcontrib><creatorcontrib>Lee, Ju Hyeok</creatorcontrib><creatorcontrib>Kang, Eunji</creatorcontrib><creatorcontrib>Shin, Kihyun</creatorcontrib><creatorcontrib>Lee, Hyuck Mo</creatorcontrib><creatorcontrib>Kim, Hyun You</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jungwoo</au><au>Choi, Hyuk</au><au>Lee, Ju Hyeok</au><au>Kang, Eunji</au><au>Shin, Kihyun</au><au>Lee, Hyuck Mo</au><au>Kim, Hyun You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-07-11</date><risdate>2024</risdate><volume>128</volume><issue>27</issue><spage>11176</spage><epage>11182</epage><pages>11176-11182</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized at the CeO x –TiO2 interfaces on TiO2 particles (ACT catalyst). We constructed two energetic landscapes of the WGSR (redox and associative mechanisms), concurrently presenting the H2 formation as a rate-determining step. Electronic analysis data showed that the charge state of the oxygen ions participating in WGSR strongly correlates with the oxygen vacancy formation energy (OVF) and hydrogen binding energy (ΔE H), directly scaling the CO oxidation power and the H2 production ability. Further expansion toward various Au on oxide–oxide combinations confirmed that the delicate control of metal-oxide-oxide interfaces with optimized local electronic structures expresses the rational design of a WGSR catalyst.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c01559</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7899-2631</orcidid><orcidid>https://orcid.org/0000-0003-4556-6692</orcidid><orcidid>https://orcid.org/0000-0001-8105-1640</orcidid><orcidid>https://orcid.org/0000-0003-3988-6331</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2024-07, Vol.128 (27), p.11176-11182
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_4c01559
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Chemical and Catalytic Reactivity at Interfaces
title Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Mechanism%20of%20the%20Water%E2%80%93Gas%20Shift%20Reaction%20Activity%20Catalyzed%20by%20Au%20Single%20Atoms%20Supported%20on%20Multicomponent%20Oxides&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Choi,%20Jungwoo&rft.date=2024-07-11&rft.volume=128&rft.issue=27&rft.spage=11176&rft.epage=11182&rft.pages=11176-11182&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c01559&rft_dat=%3Cacs_cross%3Ed164328234%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true