Loading…
Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides
The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized...
Saved in:
Published in: | Journal of physical chemistry. C 2024-07, Vol.128 (27), p.11176-11182 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3 |
container_end_page | 11182 |
container_issue | 27 |
container_start_page | 11176 |
container_title | Journal of physical chemistry. C |
container_volume | 128 |
creator | Choi, Jungwoo Choi, Hyuk Lee, Ju Hyeok Kang, Eunji Shin, Kihyun Lee, Hyuck Mo Kim, Hyun You |
description | The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized at the CeO x –TiO2 interfaces on TiO2 particles (ACT catalyst). We constructed two energetic landscapes of the WGSR (redox and associative mechanisms), concurrently presenting the H2 formation as a rate-determining step. Electronic analysis data showed that the charge state of the oxygen ions participating in WGSR strongly correlates with the oxygen vacancy formation energy (OVF) and hydrogen binding energy (ΔE H), directly scaling the CO oxidation power and the H2 production ability. Further expansion toward various Au on oxide–oxide combinations confirmed that the delicate control of metal-oxide-oxide interfaces with optimized local electronic structures expresses the rational design of a WGSR catalyst. |
doi_str_mv | 10.1021/acs.jpcc.4c01559 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_4c01559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d164328234</sourcerecordid><originalsourceid>FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3</originalsourceid><addsrcrecordid>eNp1kN1KwzAYhoMoOKfnHuYC7MxP05_DUnQKGwOneFjSNHUZbVOSVKxHuwfv0Csxc8Mzj94P3h8-HgCuMZphRPAtF3a27YWYhQJhxtITMMEpJUEcMnb6d4fxObiwdosQowjTCdjlunNGN43q3uBSig3vlG2hrqHbSPjKnTTfu685t3C9UbWDT5ILp3QHMy_vyo0w544346esYDnCbIBrv9RImDnd-tLQ99o4b_rKcmicErrtdSc7B1cfqpL2EpzVvLHy6qhT8HJ_95w_BIvV_DHPFgHHEXUBjhAKSRxTghFKIk6rGEeE0ITwElW0TtIa05iwMimTGAvGBYlKkvIyRahKfX4K0GFXGG2tkXXRG9VyMxYYFXuChSdY7AkWR4K-cnOo_Dp6MJ1_8P_4D7y2drQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Choi, Jungwoo ; Choi, Hyuk ; Lee, Ju Hyeok ; Kang, Eunji ; Shin, Kihyun ; Lee, Hyuck Mo ; Kim, Hyun You</creator><creatorcontrib>Choi, Jungwoo ; Choi, Hyuk ; Lee, Ju Hyeok ; Kang, Eunji ; Shin, Kihyun ; Lee, Hyuck Mo ; Kim, Hyun You</creatorcontrib><description>The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized at the CeO x –TiO2 interfaces on TiO2 particles (ACT catalyst). We constructed two energetic landscapes of the WGSR (redox and associative mechanisms), concurrently presenting the H2 formation as a rate-determining step. Electronic analysis data showed that the charge state of the oxygen ions participating in WGSR strongly correlates with the oxygen vacancy formation energy (OVF) and hydrogen binding energy (ΔE H), directly scaling the CO oxidation power and the H2 production ability. Further expansion toward various Au on oxide–oxide combinations confirmed that the delicate control of metal-oxide-oxide interfaces with optimized local electronic structures expresses the rational design of a WGSR catalyst.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c01559</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2024-07, Vol.128 (27), p.11176-11182</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3</cites><orcidid>0000-0002-7899-2631 ; 0000-0003-4556-6692 ; 0000-0001-8105-1640 ; 0000-0003-3988-6331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Choi, Jungwoo</creatorcontrib><creatorcontrib>Choi, Hyuk</creatorcontrib><creatorcontrib>Lee, Ju Hyeok</creatorcontrib><creatorcontrib>Kang, Eunji</creatorcontrib><creatorcontrib>Shin, Kihyun</creatorcontrib><creatorcontrib>Lee, Hyuck Mo</creatorcontrib><creatorcontrib>Kim, Hyun You</creatorcontrib><title>Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized at the CeO x –TiO2 interfaces on TiO2 particles (ACT catalyst). We constructed two energetic landscapes of the WGSR (redox and associative mechanisms), concurrently presenting the H2 formation as a rate-determining step. Electronic analysis data showed that the charge state of the oxygen ions participating in WGSR strongly correlates with the oxygen vacancy formation energy (OVF) and hydrogen binding energy (ΔE H), directly scaling the CO oxidation power and the H2 production ability. Further expansion toward various Au on oxide–oxide combinations confirmed that the delicate control of metal-oxide-oxide interfaces with optimized local electronic structures expresses the rational design of a WGSR catalyst.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kN1KwzAYhoMoOKfnHuYC7MxP05_DUnQKGwOneFjSNHUZbVOSVKxHuwfv0Csxc8Mzj94P3h8-HgCuMZphRPAtF3a27YWYhQJhxtITMMEpJUEcMnb6d4fxObiwdosQowjTCdjlunNGN43q3uBSig3vlG2hrqHbSPjKnTTfu685t3C9UbWDT5ILp3QHMy_vyo0w544346esYDnCbIBrv9RImDnd-tLQ99o4b_rKcmicErrtdSc7B1cfqpL2EpzVvLHy6qhT8HJ_95w_BIvV_DHPFgHHEXUBjhAKSRxTghFKIk6rGEeE0ITwElW0TtIa05iwMimTGAvGBYlKkvIyRahKfX4K0GFXGG2tkXXRG9VyMxYYFXuChSdY7AkWR4K-cnOo_Dp6MJ1_8P_4D7y2drQ</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Choi, Jungwoo</creator><creator>Choi, Hyuk</creator><creator>Lee, Ju Hyeok</creator><creator>Kang, Eunji</creator><creator>Shin, Kihyun</creator><creator>Lee, Hyuck Mo</creator><creator>Kim, Hyun You</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7899-2631</orcidid><orcidid>https://orcid.org/0000-0003-4556-6692</orcidid><orcidid>https://orcid.org/0000-0001-8105-1640</orcidid><orcidid>https://orcid.org/0000-0003-3988-6331</orcidid></search><sort><creationdate>20240711</creationdate><title>Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides</title><author>Choi, Jungwoo ; Choi, Hyuk ; Lee, Ju Hyeok ; Kang, Eunji ; Shin, Kihyun ; Lee, Hyuck Mo ; Kim, Hyun You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jungwoo</creatorcontrib><creatorcontrib>Choi, Hyuk</creatorcontrib><creatorcontrib>Lee, Ju Hyeok</creatorcontrib><creatorcontrib>Kang, Eunji</creatorcontrib><creatorcontrib>Shin, Kihyun</creatorcontrib><creatorcontrib>Lee, Hyuck Mo</creatorcontrib><creatorcontrib>Kim, Hyun You</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jungwoo</au><au>Choi, Hyuk</au><au>Lee, Ju Hyeok</au><au>Kang, Eunji</au><au>Shin, Kihyun</au><au>Lee, Hyuck Mo</au><au>Kim, Hyun You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-07-11</date><risdate>2024</risdate><volume>128</volume><issue>27</issue><spage>11176</spage><epage>11182</epage><pages>11176-11182</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The complicated reaction pathway of the water–gas shift reaction (WGSR) hinders understanding the overall reaction mechanism and extracting the factors to design better performing catalysts. Here, we use density functional theory to study the mechanism of WGSR catalyzed by Au single atoms stabilized at the CeO x –TiO2 interfaces on TiO2 particles (ACT catalyst). We constructed two energetic landscapes of the WGSR (redox and associative mechanisms), concurrently presenting the H2 formation as a rate-determining step. Electronic analysis data showed that the charge state of the oxygen ions participating in WGSR strongly correlates with the oxygen vacancy formation energy (OVF) and hydrogen binding energy (ΔE H), directly scaling the CO oxidation power and the H2 production ability. Further expansion toward various Au on oxide–oxide combinations confirmed that the delicate control of metal-oxide-oxide interfaces with optimized local electronic structures expresses the rational design of a WGSR catalyst.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c01559</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7899-2631</orcidid><orcidid>https://orcid.org/0000-0003-4556-6692</orcidid><orcidid>https://orcid.org/0000-0001-8105-1640</orcidid><orcidid>https://orcid.org/0000-0003-3988-6331</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2024-07, Vol.128 (27), p.11176-11182 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_4c01559 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Chemical and Catalytic Reactivity at Interfaces |
title | Controlling Mechanism of the Water–Gas Shift Reaction Activity Catalyzed by Au Single Atoms Supported on Multicomponent Oxides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Mechanism%20of%20the%20Water%E2%80%93Gas%20Shift%20Reaction%20Activity%20Catalyzed%20by%20Au%20Single%20Atoms%20Supported%20on%20Multicomponent%20Oxides&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Choi,%20Jungwoo&rft.date=2024-07-11&rft.volume=128&rft.issue=27&rft.spage=11176&rft.epage=11182&rft.pages=11176-11182&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c01559&rft_dat=%3Cacs_cross%3Ed164328234%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a163t-160042773210086a3d71622382ab0d3f89f13725b8b871c5ac26b29ab900d96a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |