Loading…

Predictive Model for Catalytic Methane Pyrolysis

Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers ope...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2024-05, Vol.128 (22), p.9034-9040
Main Authors: Pototschnig, Ulrich, Matas, Martin, Scheiblehner, David, Neuschitzer, David, Obenaus-Emler, Robert, Antrekowitsch, Helmut, Holec, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053
container_end_page 9040
container_issue 22
container_start_page 9034
container_title Journal of physical chemistry. C
container_volume 128
creator Pototschnig, Ulrich
Matas, Martin
Scheiblehner, David
Neuschitzer, David
Obenaus-Emler, Robert
Antrekowitsch, Helmut
Holec, David
description Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers operating temperatures, making methane pyrolysis economically viable. In this work, we derive a model that provides a qualitative comparison of possible catalyst materials. The model is based on calculations of adsorption energies using density functional theory. Thirty different elements were considered. Adsorption energies of intermediate molecules in the methane pyrolysis reaction correlate linearly with the adsorption energy of carbon. Moreover, the adsorption energy increases in magnitude with decreasing group number in the d-block of the periodic table. For a temperature range between 600 and 1200 K and a normalized partial pressure range for H2 between 10–1 and 10–5, a total of 18 different materials were found to be optimal catalysts at least once. This indicates that catalyst selection and reactor operating conditions should be well-matched. The present work establishes the foundation for future large-scale studies of surfaces, alloy compositions, and material classes using machine learning algorithms.
doi_str_mv 10.1021/acs.jpcc.4c01690
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_4c01690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b863073491</sourcerecordid><originalsourceid>FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053</originalsourceid><addsrcrecordid>eNp1j7FOwzAQhi0EEqWwM-YBSDjbsZ2MKAKK1IoO7Wy5Z1ukCk1lG6S8PQmt2JjupPv_0_cRck-hoMDoo8FY7I-IRYlAZQ0XZEZrznJVCnH5t5fqmtzEuAcQHCifEVgHZ1tM7bfLVr11Xeb7kDUmmW5ILWYrlz7MwWXrIfTdENt4S6686aK7O8852b48b5pFvnx_fWuelrlhIFKuLKt8CQa4VL5SzAvLdygUczWvnORYWRg5jZTcoucGrZByZyuolcOJbk7g9BdDH2NwXh9D-2nCoCnoyViPxnoy1mfjsfJwqvxe-q9wGAH_j_8AqGRZbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictive Model for Catalytic Methane Pyrolysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Pototschnig, Ulrich ; Matas, Martin ; Scheiblehner, David ; Neuschitzer, David ; Obenaus-Emler, Robert ; Antrekowitsch, Helmut ; Holec, David</creator><creatorcontrib>Pototschnig, Ulrich ; Matas, Martin ; Scheiblehner, David ; Neuschitzer, David ; Obenaus-Emler, Robert ; Antrekowitsch, Helmut ; Holec, David</creatorcontrib><description>Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers operating temperatures, making methane pyrolysis economically viable. In this work, we derive a model that provides a qualitative comparison of possible catalyst materials. The model is based on calculations of adsorption energies using density functional theory. Thirty different elements were considered. Adsorption energies of intermediate molecules in the methane pyrolysis reaction correlate linearly with the adsorption energy of carbon. Moreover, the adsorption energy increases in magnitude with decreasing group number in the d-block of the periodic table. For a temperature range between 600 and 1200 K and a normalized partial pressure range for H2 between 10–1 and 10–5, a total of 18 different materials were found to be optimal catalysts at least once. This indicates that catalyst selection and reactor operating conditions should be well-matched. The present work establishes the foundation for future large-scale studies of surfaces, alloy compositions, and material classes using machine learning algorithms.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c01690</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2024-05, Vol.128 (22), p.9034-9040</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053</cites><orcidid>0000-0002-5270-6027 ; 0009-0005-2544-1296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pototschnig, Ulrich</creatorcontrib><creatorcontrib>Matas, Martin</creatorcontrib><creatorcontrib>Scheiblehner, David</creatorcontrib><creatorcontrib>Neuschitzer, David</creatorcontrib><creatorcontrib>Obenaus-Emler, Robert</creatorcontrib><creatorcontrib>Antrekowitsch, Helmut</creatorcontrib><creatorcontrib>Holec, David</creatorcontrib><title>Predictive Model for Catalytic Methane Pyrolysis</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers operating temperatures, making methane pyrolysis economically viable. In this work, we derive a model that provides a qualitative comparison of possible catalyst materials. The model is based on calculations of adsorption energies using density functional theory. Thirty different elements were considered. Adsorption energies of intermediate molecules in the methane pyrolysis reaction correlate linearly with the adsorption energy of carbon. Moreover, the adsorption energy increases in magnitude with decreasing group number in the d-block of the periodic table. For a temperature range between 600 and 1200 K and a normalized partial pressure range for H2 between 10–1 and 10–5, a total of 18 different materials were found to be optimal catalysts at least once. This indicates that catalyst selection and reactor operating conditions should be well-matched. The present work establishes the foundation for future large-scale studies of surfaces, alloy compositions, and material classes using machine learning algorithms.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1j7FOwzAQhi0EEqWwM-YBSDjbsZ2MKAKK1IoO7Wy5Z1ukCk1lG6S8PQmt2JjupPv_0_cRck-hoMDoo8FY7I-IRYlAZQ0XZEZrznJVCnH5t5fqmtzEuAcQHCifEVgHZ1tM7bfLVr11Xeb7kDUmmW5ILWYrlz7MwWXrIfTdENt4S6686aK7O8852b48b5pFvnx_fWuelrlhIFKuLKt8CQa4VL5SzAvLdygUczWvnORYWRg5jZTcoucGrZByZyuolcOJbk7g9BdDH2NwXh9D-2nCoCnoyViPxnoy1mfjsfJwqvxe-q9wGAH_j_8AqGRZbQ</recordid><startdate>20240525</startdate><enddate>20240525</enddate><creator>Pototschnig, Ulrich</creator><creator>Matas, Martin</creator><creator>Scheiblehner, David</creator><creator>Neuschitzer, David</creator><creator>Obenaus-Emler, Robert</creator><creator>Antrekowitsch, Helmut</creator><creator>Holec, David</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5270-6027</orcidid><orcidid>https://orcid.org/0009-0005-2544-1296</orcidid></search><sort><creationdate>20240525</creationdate><title>Predictive Model for Catalytic Methane Pyrolysis</title><author>Pototschnig, Ulrich ; Matas, Martin ; Scheiblehner, David ; Neuschitzer, David ; Obenaus-Emler, Robert ; Antrekowitsch, Helmut ; Holec, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pototschnig, Ulrich</creatorcontrib><creatorcontrib>Matas, Martin</creatorcontrib><creatorcontrib>Scheiblehner, David</creatorcontrib><creatorcontrib>Neuschitzer, David</creatorcontrib><creatorcontrib>Obenaus-Emler, Robert</creatorcontrib><creatorcontrib>Antrekowitsch, Helmut</creatorcontrib><creatorcontrib>Holec, David</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pototschnig, Ulrich</au><au>Matas, Martin</au><au>Scheiblehner, David</au><au>Neuschitzer, David</au><au>Obenaus-Emler, Robert</au><au>Antrekowitsch, Helmut</au><au>Holec, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Model for Catalytic Methane Pyrolysis</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-05-25</date><risdate>2024</risdate><volume>128</volume><issue>22</issue><spage>9034</spage><epage>9040</epage><pages>9034-9040</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers operating temperatures, making methane pyrolysis economically viable. In this work, we derive a model that provides a qualitative comparison of possible catalyst materials. The model is based on calculations of adsorption energies using density functional theory. Thirty different elements were considered. Adsorption energies of intermediate molecules in the methane pyrolysis reaction correlate linearly with the adsorption energy of carbon. Moreover, the adsorption energy increases in magnitude with decreasing group number in the d-block of the periodic table. For a temperature range between 600 and 1200 K and a normalized partial pressure range for H2 between 10–1 and 10–5, a total of 18 different materials were found to be optimal catalysts at least once. This indicates that catalyst selection and reactor operating conditions should be well-matched. The present work establishes the foundation for future large-scale studies of surfaces, alloy compositions, and material classes using machine learning algorithms.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c01690</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5270-6027</orcidid><orcidid>https://orcid.org/0009-0005-2544-1296</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2024-05, Vol.128 (22), p.9034-9040
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_4c01690
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Chemical and Catalytic Reactivity at Interfaces
title Predictive Model for Catalytic Methane Pyrolysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Model%20for%20Catalytic%20Methane%20Pyrolysis&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Pototschnig,%20Ulrich&rft.date=2024-05-25&rft.volume=128&rft.issue=22&rft.spage=9034&rft.epage=9040&rft.pages=9034-9040&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c01690&rft_dat=%3Cacs_cross%3Eb863073491%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true