Loading…
Predictive Model for Catalytic Methane Pyrolysis
Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers ope...
Saved in:
Published in: | Journal of physical chemistry. C 2024-05, Vol.128 (22), p.9034-9040 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053 |
container_end_page | 9040 |
container_issue | 22 |
container_start_page | 9034 |
container_title | Journal of physical chemistry. C |
container_volume | 128 |
creator | Pototschnig, Ulrich Matas, Martin Scheiblehner, David Neuschitzer, David Obenaus-Emler, Robert Antrekowitsch, Helmut Holec, David |
description | Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers operating temperatures, making methane pyrolysis economically viable. In this work, we derive a model that provides a qualitative comparison of possible catalyst materials. The model is based on calculations of adsorption energies using density functional theory. Thirty different elements were considered. Adsorption energies of intermediate molecules in the methane pyrolysis reaction correlate linearly with the adsorption energy of carbon. Moreover, the adsorption energy increases in magnitude with decreasing group number in the d-block of the periodic table. For a temperature range between 600 and 1200 K and a normalized partial pressure range for H2 between 10–1 and 10–5, a total of 18 different materials were found to be optimal catalysts at least once. This indicates that catalyst selection and reactor operating conditions should be well-matched. The present work establishes the foundation for future large-scale studies of surfaces, alloy compositions, and material classes using machine learning algorithms. |
doi_str_mv | 10.1021/acs.jpcc.4c01690 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_4c01690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b863073491</sourcerecordid><originalsourceid>FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053</originalsourceid><addsrcrecordid>eNp1j7FOwzAQhi0EEqWwM-YBSDjbsZ2MKAKK1IoO7Wy5Z1ukCk1lG6S8PQmt2JjupPv_0_cRck-hoMDoo8FY7I-IRYlAZQ0XZEZrznJVCnH5t5fqmtzEuAcQHCifEVgHZ1tM7bfLVr11Xeb7kDUmmW5ILWYrlz7MwWXrIfTdENt4S6686aK7O8852b48b5pFvnx_fWuelrlhIFKuLKt8CQa4VL5SzAvLdygUczWvnORYWRg5jZTcoucGrZByZyuolcOJbk7g9BdDH2NwXh9D-2nCoCnoyViPxnoy1mfjsfJwqvxe-q9wGAH_j_8AqGRZbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictive Model for Catalytic Methane Pyrolysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Pototschnig, Ulrich ; Matas, Martin ; Scheiblehner, David ; Neuschitzer, David ; Obenaus-Emler, Robert ; Antrekowitsch, Helmut ; Holec, David</creator><creatorcontrib>Pototschnig, Ulrich ; Matas, Martin ; Scheiblehner, David ; Neuschitzer, David ; Obenaus-Emler, Robert ; Antrekowitsch, Helmut ; Holec, David</creatorcontrib><description>Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers operating temperatures, making methane pyrolysis economically viable. In this work, we derive a model that provides a qualitative comparison of possible catalyst materials. The model is based on calculations of adsorption energies using density functional theory. Thirty different elements were considered. Adsorption energies of intermediate molecules in the methane pyrolysis reaction correlate linearly with the adsorption energy of carbon. Moreover, the adsorption energy increases in magnitude with decreasing group number in the d-block of the periodic table. For a temperature range between 600 and 1200 K and a normalized partial pressure range for H2 between 10–1 and 10–5, a total of 18 different materials were found to be optimal catalysts at least once. This indicates that catalyst selection and reactor operating conditions should be well-matched. The present work establishes the foundation for future large-scale studies of surfaces, alloy compositions, and material classes using machine learning algorithms.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c01690</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2024-05, Vol.128 (22), p.9034-9040</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053</cites><orcidid>0000-0002-5270-6027 ; 0009-0005-2544-1296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pototschnig, Ulrich</creatorcontrib><creatorcontrib>Matas, Martin</creatorcontrib><creatorcontrib>Scheiblehner, David</creatorcontrib><creatorcontrib>Neuschitzer, David</creatorcontrib><creatorcontrib>Obenaus-Emler, Robert</creatorcontrib><creatorcontrib>Antrekowitsch, Helmut</creatorcontrib><creatorcontrib>Holec, David</creatorcontrib><title>Predictive Model for Catalytic Methane Pyrolysis</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers operating temperatures, making methane pyrolysis economically viable. In this work, we derive a model that provides a qualitative comparison of possible catalyst materials. The model is based on calculations of adsorption energies using density functional theory. Thirty different elements were considered. Adsorption energies of intermediate molecules in the methane pyrolysis reaction correlate linearly with the adsorption energy of carbon. Moreover, the adsorption energy increases in magnitude with decreasing group number in the d-block of the periodic table. For a temperature range between 600 and 1200 K and a normalized partial pressure range for H2 between 10–1 and 10–5, a total of 18 different materials were found to be optimal catalysts at least once. This indicates that catalyst selection and reactor operating conditions should be well-matched. The present work establishes the foundation for future large-scale studies of surfaces, alloy compositions, and material classes using machine learning algorithms.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1j7FOwzAQhi0EEqWwM-YBSDjbsZ2MKAKK1IoO7Wy5Z1ukCk1lG6S8PQmt2JjupPv_0_cRck-hoMDoo8FY7I-IRYlAZQ0XZEZrznJVCnH5t5fqmtzEuAcQHCifEVgHZ1tM7bfLVr11Xeb7kDUmmW5ILWYrlz7MwWXrIfTdENt4S6686aK7O8852b48b5pFvnx_fWuelrlhIFKuLKt8CQa4VL5SzAvLdygUczWvnORYWRg5jZTcoucGrZByZyuolcOJbk7g9BdDH2NwXh9D-2nCoCnoyViPxnoy1mfjsfJwqvxe-q9wGAH_j_8AqGRZbQ</recordid><startdate>20240525</startdate><enddate>20240525</enddate><creator>Pototschnig, Ulrich</creator><creator>Matas, Martin</creator><creator>Scheiblehner, David</creator><creator>Neuschitzer, David</creator><creator>Obenaus-Emler, Robert</creator><creator>Antrekowitsch, Helmut</creator><creator>Holec, David</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5270-6027</orcidid><orcidid>https://orcid.org/0009-0005-2544-1296</orcidid></search><sort><creationdate>20240525</creationdate><title>Predictive Model for Catalytic Methane Pyrolysis</title><author>Pototschnig, Ulrich ; Matas, Martin ; Scheiblehner, David ; Neuschitzer, David ; Obenaus-Emler, Robert ; Antrekowitsch, Helmut ; Holec, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pototschnig, Ulrich</creatorcontrib><creatorcontrib>Matas, Martin</creatorcontrib><creatorcontrib>Scheiblehner, David</creatorcontrib><creatorcontrib>Neuschitzer, David</creatorcontrib><creatorcontrib>Obenaus-Emler, Robert</creatorcontrib><creatorcontrib>Antrekowitsch, Helmut</creatorcontrib><creatorcontrib>Holec, David</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pototschnig, Ulrich</au><au>Matas, Martin</au><au>Scheiblehner, David</au><au>Neuschitzer, David</au><au>Obenaus-Emler, Robert</au><au>Antrekowitsch, Helmut</au><au>Holec, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Model for Catalytic Methane Pyrolysis</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-05-25</date><risdate>2024</risdate><volume>128</volume><issue>22</issue><spage>9034</spage><epage>9040</epage><pages>9034-9040</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Methane pyrolysis provides a scalable alternative to conventional hydrogen production methods, avoiding greenhouse gas emissions. However, high operating temperatures limit economic feasibility on an industrial scale. A major scientific goal is, therefore, to find a catalyst material that lowers operating temperatures, making methane pyrolysis economically viable. In this work, we derive a model that provides a qualitative comparison of possible catalyst materials. The model is based on calculations of adsorption energies using density functional theory. Thirty different elements were considered. Adsorption energies of intermediate molecules in the methane pyrolysis reaction correlate linearly with the adsorption energy of carbon. Moreover, the adsorption energy increases in magnitude with decreasing group number in the d-block of the periodic table. For a temperature range between 600 and 1200 K and a normalized partial pressure range for H2 between 10–1 and 10–5, a total of 18 different materials were found to be optimal catalysts at least once. This indicates that catalyst selection and reactor operating conditions should be well-matched. The present work establishes the foundation for future large-scale studies of surfaces, alloy compositions, and material classes using machine learning algorithms.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c01690</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5270-6027</orcidid><orcidid>https://orcid.org/0009-0005-2544-1296</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2024-05, Vol.128 (22), p.9034-9040 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_4c01690 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Chemical and Catalytic Reactivity at Interfaces |
title | Predictive Model for Catalytic Methane Pyrolysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Model%20for%20Catalytic%20Methane%20Pyrolysis&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Pototschnig,%20Ulrich&rft.date=2024-05-25&rft.volume=128&rft.issue=22&rft.spage=9034&rft.epage=9040&rft.pages=9034-9040&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c01690&rft_dat=%3Cacs_cross%3Eb863073491%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a205t-7d28f40a0367f872f5d3bc572e938e63c8d0016a663dcf3acd566bd8097ec0053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |