Loading…
Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency
This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is...
Saved in:
Published in: | Journal of physical chemistry. C 2025-01, Vol.129 (1), p.927-939 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83 |
container_end_page | 939 |
container_issue | 1 |
container_start_page | 927 |
container_title | Journal of physical chemistry. C |
container_volume | 129 |
creator | Aono, C. M. Aquino, V. R. R. Bakuzis, A. F. Miotto, R. |
description | This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies. |
doi_str_mv | 10.1021/acs.jpcc.4c07127 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_4c07127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c15518409</sourcerecordid><originalsourceid>FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM_oHkOCPOE7GKiq0ohUDRWKzHMdHU6VxZKdD_j0pqdiY7qT3fU6nB6FHSmJKGH3WJsSHzpg4MURSJq_QjOacRTIR4vpvT-QtugvhQIjghPIZ-nqrW9vXBm9d21tcaN84vOg677TZYx2wxjvnGgzO435v8Ud_qgbsAG_19wSuhs76MfLHWuMlQG1q25rhHt2AboJ9uMw5-nxZ7opVtHl_XReLTaRpyvuoYqaS3BAKVGYV8NQKXhlagsxTzsucJlwwsEkqCNMZZCmrGAMJeSaAizLjc0Smu8a7ELwF1fn6qP2gKFFnM2o0o85m1MXMiDxNyG_iTr4dH_y__gN3n2c1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Aono, C. M. ; Aquino, V. R. R. ; Bakuzis, A. F. ; Miotto, R.</creator><creatorcontrib>Aono, C. M. ; Aquino, V. R. R. ; Bakuzis, A. F. ; Miotto, R.</creatorcontrib><description>This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c07127</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2025-01, Vol.129 (1), p.927-939</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83</cites><orcidid>0000-0003-3366-106X ; 0000-0001-5837-2569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Aono, C. M.</creatorcontrib><creatorcontrib>Aquino, V. R. R.</creatorcontrib><creatorcontrib>Bakuzis, A. F.</creatorcontrib><creatorcontrib>Miotto, R.</creatorcontrib><title>Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM_oHkOCPOE7GKiq0ohUDRWKzHMdHU6VxZKdD_j0pqdiY7qT3fU6nB6FHSmJKGH3WJsSHzpg4MURSJq_QjOacRTIR4vpvT-QtugvhQIjghPIZ-nqrW9vXBm9d21tcaN84vOg677TZYx2wxjvnGgzO435v8Ud_qgbsAG_19wSuhs76MfLHWuMlQG1q25rhHt2AboJ9uMw5-nxZ7opVtHl_XReLTaRpyvuoYqaS3BAKVGYV8NQKXhlagsxTzsucJlwwsEkqCNMZZCmrGAMJeSaAizLjc0Smu8a7ELwF1fn6qP2gKFFnM2o0o85m1MXMiDxNyG_iTr4dH_y__gN3n2c1</recordid><startdate>20250109</startdate><enddate>20250109</enddate><creator>Aono, C. M.</creator><creator>Aquino, V. R. R.</creator><creator>Bakuzis, A. F.</creator><creator>Miotto, R.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3366-106X</orcidid><orcidid>https://orcid.org/0000-0001-5837-2569</orcidid></search><sort><creationdate>20250109</creationdate><title>Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency</title><author>Aono, C. M. ; Aquino, V. R. R. ; Bakuzis, A. F. ; Miotto, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aono, C. M.</creatorcontrib><creatorcontrib>Aquino, V. R. R.</creatorcontrib><creatorcontrib>Bakuzis, A. F.</creatorcontrib><creatorcontrib>Miotto, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aono, C. M.</au><au>Aquino, V. R. R.</au><au>Bakuzis, A. F.</au><au>Miotto, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2025-01-09</date><risdate>2025</risdate><volume>129</volume><issue>1</issue><spage>927</spage><epage>939</epage><pages>927-939</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c07127</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3366-106X</orcidid><orcidid>https://orcid.org/0000-0001-5837-2569</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2025-01, Vol.129 (1), p.927-939 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_4c07127 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Physical Properties of Materials and Interfaces |
title | Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Monte%20Carlo%20Approach%20as%20a%20Tool%20for%20the%20Study%20of%20Magnetic%20Hyperthermia%20Efficiency&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Aono,%20C.%20M.&rft.date=2025-01-09&rft.volume=129&rft.issue=1&rft.spage=927&rft.epage=939&rft.pages=927-939&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c07127&rft_dat=%3Cacs_cross%3Ec15518409%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |