Loading…

Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency

This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2025-01, Vol.129 (1), p.927-939
Main Authors: Aono, C. M., Aquino, V. R. R., Bakuzis, A. F., Miotto, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83
container_end_page 939
container_issue 1
container_start_page 927
container_title Journal of physical chemistry. C
container_volume 129
creator Aono, C. M.
Aquino, V. R. R.
Bakuzis, A. F.
Miotto, R.
description This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.
doi_str_mv 10.1021/acs.jpcc.4c07127
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_4c07127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c15518409</sourcerecordid><originalsourceid>FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM_oHkOCPOE7GKiq0ohUDRWKzHMdHU6VxZKdD_j0pqdiY7qT3fU6nB6FHSmJKGH3WJsSHzpg4MURSJq_QjOacRTIR4vpvT-QtugvhQIjghPIZ-nqrW9vXBm9d21tcaN84vOg677TZYx2wxjvnGgzO435v8Ud_qgbsAG_19wSuhs76MfLHWuMlQG1q25rhHt2AboJ9uMw5-nxZ7opVtHl_XReLTaRpyvuoYqaS3BAKVGYV8NQKXhlagsxTzsucJlwwsEkqCNMZZCmrGAMJeSaAizLjc0Smu8a7ELwF1fn6qP2gKFFnM2o0o85m1MXMiDxNyG_iTr4dH_y__gN3n2c1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Aono, C. M. ; Aquino, V. R. R. ; Bakuzis, A. F. ; Miotto, R.</creator><creatorcontrib>Aono, C. M. ; Aquino, V. R. R. ; Bakuzis, A. F. ; Miotto, R.</creatorcontrib><description>This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c07127</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2025-01, Vol.129 (1), p.927-939</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83</cites><orcidid>0000-0003-3366-106X ; 0000-0001-5837-2569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Aono, C. M.</creatorcontrib><creatorcontrib>Aquino, V. R. R.</creatorcontrib><creatorcontrib>Bakuzis, A. F.</creatorcontrib><creatorcontrib>Miotto, R.</creatorcontrib><title>Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM_oHkOCPOE7GKiq0ohUDRWKzHMdHU6VxZKdD_j0pqdiY7qT3fU6nB6FHSmJKGH3WJsSHzpg4MURSJq_QjOacRTIR4vpvT-QtugvhQIjghPIZ-nqrW9vXBm9d21tcaN84vOg677TZYx2wxjvnGgzO435v8Ud_qgbsAG_19wSuhs76MfLHWuMlQG1q25rhHt2AboJ9uMw5-nxZ7opVtHl_XReLTaRpyvuoYqaS3BAKVGYV8NQKXhlagsxTzsucJlwwsEkqCNMZZCmrGAMJeSaAizLjc0Smu8a7ELwF1fn6qP2gKFFnM2o0o85m1MXMiDxNyG_iTr4dH_y__gN3n2c1</recordid><startdate>20250109</startdate><enddate>20250109</enddate><creator>Aono, C. M.</creator><creator>Aquino, V. R. R.</creator><creator>Bakuzis, A. F.</creator><creator>Miotto, R.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3366-106X</orcidid><orcidid>https://orcid.org/0000-0001-5837-2569</orcidid></search><sort><creationdate>20250109</creationdate><title>Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency</title><author>Aono, C. M. ; Aquino, V. R. R. ; Bakuzis, A. F. ; Miotto, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aono, C. M.</creatorcontrib><creatorcontrib>Aquino, V. R. R.</creatorcontrib><creatorcontrib>Bakuzis, A. F.</creatorcontrib><creatorcontrib>Miotto, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aono, C. M.</au><au>Aquino, V. R. R.</au><au>Bakuzis, A. F.</au><au>Miotto, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2025-01-09</date><risdate>2025</risdate><volume>129</volume><issue>1</issue><spage>927</spage><epage>939</epage><pages>927-939</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c07127</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3366-106X</orcidid><orcidid>https://orcid.org/0000-0001-5837-2569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2025-01, Vol.129 (1), p.927-939
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_4c07127
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Physical Properties of Materials and Interfaces
title Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Monte%20Carlo%20Approach%20as%20a%20Tool%20for%20the%20Study%20of%20Magnetic%20Hyperthermia%20Efficiency&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Aono,%20C.%20M.&rft.date=2025-01-09&rft.volume=129&rft.issue=1&rft.spage=927&rft.epage=939&rft.pages=927-939&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c07127&rft_dat=%3Cacs_cross%3Ec15518409%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a163t-d2cd73c01f178df36e53dc1bf79633b914352fe46502a8f862d22f7f985f35b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true