Loading…

Strain-Induced Tunable Band Gap and Morphology-Dependent Photocurrent in RGO–CdS Nanostructures

In situ CdS nanostructures (nanorods, nanoparticles, nanoclusters) are grown on a reduced graphene oxide (RGO) surface to tune the photocurrent generated due to transfer of excited charge from CdS to RGO. The highest change in photocurrent is achieved in the case of nanoclusters, while nanorods show...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2015-12, Vol.119 (49), p.27749-27758
Main Authors: Mondal, Supriya, Sudhu, Suparna, Bhattacharya, Shatabda, Saha, Shyamal K
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a346t-c8b0f9123f456f6808edef2c3c0ad1a83f39f921731f82983e4cee3a23f5ad03
cites cdi_FETCH-LOGICAL-a346t-c8b0f9123f456f6808edef2c3c0ad1a83f39f921731f82983e4cee3a23f5ad03
container_end_page 27758
container_issue 49
container_start_page 27749
container_title Journal of physical chemistry. C
container_volume 119
creator Mondal, Supriya
Sudhu, Suparna
Bhattacharya, Shatabda
Saha, Shyamal K
description In situ CdS nanostructures (nanorods, nanoparticles, nanoclusters) are grown on a reduced graphene oxide (RGO) surface to tune the photocurrent generated due to transfer of excited charge from CdS to RGO. The highest change in photocurrent is achieved in the case of nanoclusters, while nanorods show the lowest. Rietveld analysis has been done to find the microstrain present in three nanocomposites. UV–vis spectroscopy reveals the modulation in band gap due to different growth morphology. From the band structure, it is seen that in nanorod structure strain-induced localized states lower the conduction band which essentially decreases the charge transfer from CdS to RGO, resulting in a smaller change in the photocurrent, while in the case of a nanocluster the photocurrent is maximum due to the lowest strain. This is also consistent with the photoluminescence (PL) quenching as obtained from PL spectra.
doi_str_mv 10.1021/acs.jpcc.5b08116
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_5b08116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i82244801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-c8b0f9123f456f6808edef2c3c0ad1a83f39f921731f82983e4cee3a23f5ad03</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqWwZ-kDkGLH-XGWUGipVCii3UcTe0xbFTuyk0V33IEbchISWrFj9c1o5o1Gj5BrzkacxfwWVBhta6VGacUk59kJGfBCxFGepOnpX53k5-QihC1jqWBcDAgsGw8bG82sbhVqumotVDuk92A1nUJN-3x2vl67nXvfRw9Yo9VoG_q6do1Trfd9s7H0bbr4_vwa6yV9AetC41vVtB7DJTkzsAt4dcwhWU0eV-OnaL6YzsZ38whEkjWRkhUzBY-FSdLMZJJJ1GhiJRQDzUEKIwpTxDwX3Mi4kAIThSigA1LQTAwJO5xV3oXg0ZS133yA35eclb2hsjNU9obKo6EOuTkgvxPXetv99__6D-8ibEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strain-Induced Tunable Band Gap and Morphology-Dependent Photocurrent in RGO–CdS Nanostructures</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mondal, Supriya ; Sudhu, Suparna ; Bhattacharya, Shatabda ; Saha, Shyamal K</creator><creatorcontrib>Mondal, Supriya ; Sudhu, Suparna ; Bhattacharya, Shatabda ; Saha, Shyamal K</creatorcontrib><description>In situ CdS nanostructures (nanorods, nanoparticles, nanoclusters) are grown on a reduced graphene oxide (RGO) surface to tune the photocurrent generated due to transfer of excited charge from CdS to RGO. The highest change in photocurrent is achieved in the case of nanoclusters, while nanorods show the lowest. Rietveld analysis has been done to find the microstrain present in three nanocomposites. UV–vis spectroscopy reveals the modulation in band gap due to different growth morphology. From the band structure, it is seen that in nanorod structure strain-induced localized states lower the conduction band which essentially decreases the charge transfer from CdS to RGO, resulting in a smaller change in the photocurrent, while in the case of a nanocluster the photocurrent is maximum due to the lowest strain. This is also consistent with the photoluminescence (PL) quenching as obtained from PL spectra.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b08116</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-12, Vol.119 (49), p.27749-27758</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-c8b0f9123f456f6808edef2c3c0ad1a83f39f921731f82983e4cee3a23f5ad03</citedby><cites>FETCH-LOGICAL-a346t-c8b0f9123f456f6808edef2c3c0ad1a83f39f921731f82983e4cee3a23f5ad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mondal, Supriya</creatorcontrib><creatorcontrib>Sudhu, Suparna</creatorcontrib><creatorcontrib>Bhattacharya, Shatabda</creatorcontrib><creatorcontrib>Saha, Shyamal K</creatorcontrib><title>Strain-Induced Tunable Band Gap and Morphology-Dependent Photocurrent in RGO–CdS Nanostructures</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>In situ CdS nanostructures (nanorods, nanoparticles, nanoclusters) are grown on a reduced graphene oxide (RGO) surface to tune the photocurrent generated due to transfer of excited charge from CdS to RGO. The highest change in photocurrent is achieved in the case of nanoclusters, while nanorods show the lowest. Rietveld analysis has been done to find the microstrain present in three nanocomposites. UV–vis spectroscopy reveals the modulation in band gap due to different growth morphology. From the band structure, it is seen that in nanorod structure strain-induced localized states lower the conduction band which essentially decreases the charge transfer from CdS to RGO, resulting in a smaller change in the photocurrent, while in the case of a nanocluster the photocurrent is maximum due to the lowest strain. This is also consistent with the photoluminescence (PL) quenching as obtained from PL spectra.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqWwZ-kDkGLH-XGWUGipVCii3UcTe0xbFTuyk0V33IEbchISWrFj9c1o5o1Gj5BrzkacxfwWVBhta6VGacUk59kJGfBCxFGepOnpX53k5-QihC1jqWBcDAgsGw8bG82sbhVqumotVDuk92A1nUJN-3x2vl67nXvfRw9Yo9VoG_q6do1Trfd9s7H0bbr4_vwa6yV9AetC41vVtB7DJTkzsAt4dcwhWU0eV-OnaL6YzsZ38whEkjWRkhUzBY-FSdLMZJJJ1GhiJRQDzUEKIwpTxDwX3Mi4kAIThSigA1LQTAwJO5xV3oXg0ZS133yA35eclb2hsjNU9obKo6EOuTkgvxPXetv99__6D-8ibEs</recordid><startdate>20151210</startdate><enddate>20151210</enddate><creator>Mondal, Supriya</creator><creator>Sudhu, Suparna</creator><creator>Bhattacharya, Shatabda</creator><creator>Saha, Shyamal K</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151210</creationdate><title>Strain-Induced Tunable Band Gap and Morphology-Dependent Photocurrent in RGO–CdS Nanostructures</title><author>Mondal, Supriya ; Sudhu, Suparna ; Bhattacharya, Shatabda ; Saha, Shyamal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-c8b0f9123f456f6808edef2c3c0ad1a83f39f921731f82983e4cee3a23f5ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Supriya</creatorcontrib><creatorcontrib>Sudhu, Suparna</creatorcontrib><creatorcontrib>Bhattacharya, Shatabda</creatorcontrib><creatorcontrib>Saha, Shyamal K</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Supriya</au><au>Sudhu, Suparna</au><au>Bhattacharya, Shatabda</au><au>Saha, Shyamal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-Induced Tunable Band Gap and Morphology-Dependent Photocurrent in RGO–CdS Nanostructures</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-12-10</date><risdate>2015</risdate><volume>119</volume><issue>49</issue><spage>27749</spage><epage>27758</epage><pages>27749-27758</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>In situ CdS nanostructures (nanorods, nanoparticles, nanoclusters) are grown on a reduced graphene oxide (RGO) surface to tune the photocurrent generated due to transfer of excited charge from CdS to RGO. The highest change in photocurrent is achieved in the case of nanoclusters, while nanorods show the lowest. Rietveld analysis has been done to find the microstrain present in three nanocomposites. UV–vis spectroscopy reveals the modulation in band gap due to different growth morphology. From the band structure, it is seen that in nanorod structure strain-induced localized states lower the conduction band which essentially decreases the charge transfer from CdS to RGO, resulting in a smaller change in the photocurrent, while in the case of a nanocluster the photocurrent is maximum due to the lowest strain. This is also consistent with the photoluminescence (PL) quenching as obtained from PL spectra.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b08116</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-12, Vol.119 (49), p.27749-27758
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_5b08116
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Strain-Induced Tunable Band Gap and Morphology-Dependent Photocurrent in RGO–CdS Nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-Induced%20Tunable%20Band%20Gap%20and%20Morphology-Dependent%20Photocurrent%20in%20RGO%E2%80%93CdS%20Nanostructures&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Mondal,%20Supriya&rft.date=2015-12-10&rft.volume=119&rft.issue=49&rft.spage=27749&rft.epage=27758&rft.pages=27749-27758&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b08116&rft_dat=%3Cacs_cross%3Ei82244801%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a346t-c8b0f9123f456f6808edef2c3c0ad1a83f39f921731f82983e4cee3a23f5ad03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true