Loading…

Spanning the “Parameter Space” of Chemical Vapor Deposition Graphene Growth with Quantum Chemical Simulations

Graphene is a 2-dimensional allotrope of carbon with remarkable physicochemical properties. Currently, the most promising route for commercial synthesis of graphene for technological application is chemical vapor deposition (CVD). The optimization of this chemical process will potentially enable con...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2016-07, Vol.120 (26), p.13851-13864
Main Authors: Page, Alister J, Mitchell, Izaac, Li, Hai-Bei, Wang, Ying, Jiao, Meng-gai, Irle, Stephan, Morokuma, Keiji
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a322t-33339dd0e862f060658958362580a58cc429b6fda14b432145745bb84c3a9ce3
cites cdi_FETCH-LOGICAL-a322t-33339dd0e862f060658958362580a58cc429b6fda14b432145745bb84c3a9ce3
container_end_page 13864
container_issue 26
container_start_page 13851
container_title Journal of physical chemistry. C
container_volume 120
creator Page, Alister J
Mitchell, Izaac
Li, Hai-Bei
Wang, Ying
Jiao, Meng-gai
Irle, Stephan
Morokuma, Keiji
description Graphene is a 2-dimensional allotrope of carbon with remarkable physicochemical properties. Currently, the most promising route for commercial synthesis of graphene for technological application is chemical vapor deposition (CVD). The optimization of this chemical process will potentially enable control over crucial properties, such as graphene quality and domain size. Such optimization requires a detailed atomistic understanding of how graphene nucleation and growth take place during CVD. This mechanism depends on a multitude of synthetic parameters: temperature, CVD pressure, catalyst type, facet and phase, feedstock type, and the presence of chemical etchants, to name only a few. In this feature article, we highlight recent quantum chemical simulations of chemical vapor deposition (CVD) graphene nucleation and growth. These simulations aim to systematically span this complex CVD “parameter space” toward providing the necessary understanding of graphene nucleation, to assist the optimization of CVD graphene growth.
doi_str_mv 10.1021/acs.jpcc.6b02673
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_6b02673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b116599965</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-33339dd0e862f060658958362580a58cc429b6fda14b432145745bb84c3a9ce3</originalsourceid><addsrcrecordid>eNp1kM9OwzAMxiMEEmNw55gHoCN_mqw9ogEDaRKgTVwrN0tpprUpSauJ2x4EXm5PQsomOOGD_Un2Z9k_hC4pGVHC6DUoP1o1So1kTpgc8yM0oCln0TgW4vhXx-NTdOb9ihDBCeUD9D5voK5N_YbbUuPd9vMZHFS61Q6HjtK77Re2BZ6UujIK1vgVGuvwrW6sN62xNZ46aEpd6yDspi3xxoT00kHddtWfbW6qbg29wZ-jkwLWXl8c6hAt7u8Wk4do9jR9nNzMIuCMtREPkS6XRCeSFUQSKZJUJFwykRAQiVIxS3NZLIHGecwZjUX4NM-TWHFIleZDRPZrlbPeO11kjTMVuI-MkqwnlgViWU8sOxALlqu95adjO1eH-_4f_waxKnIf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spanning the “Parameter Space” of Chemical Vapor Deposition Graphene Growth with Quantum Chemical Simulations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Page, Alister J ; Mitchell, Izaac ; Li, Hai-Bei ; Wang, Ying ; Jiao, Meng-gai ; Irle, Stephan ; Morokuma, Keiji</creator><creatorcontrib>Page, Alister J ; Mitchell, Izaac ; Li, Hai-Bei ; Wang, Ying ; Jiao, Meng-gai ; Irle, Stephan ; Morokuma, Keiji</creatorcontrib><description>Graphene is a 2-dimensional allotrope of carbon with remarkable physicochemical properties. Currently, the most promising route for commercial synthesis of graphene for technological application is chemical vapor deposition (CVD). The optimization of this chemical process will potentially enable control over crucial properties, such as graphene quality and domain size. Such optimization requires a detailed atomistic understanding of how graphene nucleation and growth take place during CVD. This mechanism depends on a multitude of synthetic parameters: temperature, CVD pressure, catalyst type, facet and phase, feedstock type, and the presence of chemical etchants, to name only a few. In this feature article, we highlight recent quantum chemical simulations of chemical vapor deposition (CVD) graphene nucleation and growth. These simulations aim to systematically span this complex CVD “parameter space” toward providing the necessary understanding of graphene nucleation, to assist the optimization of CVD graphene growth.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b02673</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2016-07, Vol.120 (26), p.13851-13864</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-33339dd0e862f060658958362580a58cc429b6fda14b432145745bb84c3a9ce3</citedby><cites>FETCH-LOGICAL-a322t-33339dd0e862f060658958362580a58cc429b6fda14b432145745bb84c3a9ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Page, Alister J</creatorcontrib><creatorcontrib>Mitchell, Izaac</creatorcontrib><creatorcontrib>Li, Hai-Bei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Jiao, Meng-gai</creatorcontrib><creatorcontrib>Irle, Stephan</creatorcontrib><creatorcontrib>Morokuma, Keiji</creatorcontrib><title>Spanning the “Parameter Space” of Chemical Vapor Deposition Graphene Growth with Quantum Chemical Simulations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Graphene is a 2-dimensional allotrope of carbon with remarkable physicochemical properties. Currently, the most promising route for commercial synthesis of graphene for technological application is chemical vapor deposition (CVD). The optimization of this chemical process will potentially enable control over crucial properties, such as graphene quality and domain size. Such optimization requires a detailed atomistic understanding of how graphene nucleation and growth take place during CVD. This mechanism depends on a multitude of synthetic parameters: temperature, CVD pressure, catalyst type, facet and phase, feedstock type, and the presence of chemical etchants, to name only a few. In this feature article, we highlight recent quantum chemical simulations of chemical vapor deposition (CVD) graphene nucleation and growth. These simulations aim to systematically span this complex CVD “parameter space” toward providing the necessary understanding of graphene nucleation, to assist the optimization of CVD graphene growth.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM9OwzAMxiMEEmNw55gHoCN_mqw9ogEDaRKgTVwrN0tpprUpSauJ2x4EXm5PQsomOOGD_Un2Z9k_hC4pGVHC6DUoP1o1So1kTpgc8yM0oCln0TgW4vhXx-NTdOb9ihDBCeUD9D5voK5N_YbbUuPd9vMZHFS61Q6HjtK77Re2BZ6UujIK1vgVGuvwrW6sN62xNZ46aEpd6yDspi3xxoT00kHddtWfbW6qbg29wZ-jkwLWXl8c6hAt7u8Wk4do9jR9nNzMIuCMtREPkS6XRCeSFUQSKZJUJFwykRAQiVIxS3NZLIHGecwZjUX4NM-TWHFIleZDRPZrlbPeO11kjTMVuI-MkqwnlgViWU8sOxALlqu95adjO1eH-_4f_waxKnIf</recordid><startdate>20160707</startdate><enddate>20160707</enddate><creator>Page, Alister J</creator><creator>Mitchell, Izaac</creator><creator>Li, Hai-Bei</creator><creator>Wang, Ying</creator><creator>Jiao, Meng-gai</creator><creator>Irle, Stephan</creator><creator>Morokuma, Keiji</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160707</creationdate><title>Spanning the “Parameter Space” of Chemical Vapor Deposition Graphene Growth with Quantum Chemical Simulations</title><author>Page, Alister J ; Mitchell, Izaac ; Li, Hai-Bei ; Wang, Ying ; Jiao, Meng-gai ; Irle, Stephan ; Morokuma, Keiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-33339dd0e862f060658958362580a58cc429b6fda14b432145745bb84c3a9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Page, Alister J</creatorcontrib><creatorcontrib>Mitchell, Izaac</creatorcontrib><creatorcontrib>Li, Hai-Bei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Jiao, Meng-gai</creatorcontrib><creatorcontrib>Irle, Stephan</creatorcontrib><creatorcontrib>Morokuma, Keiji</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Page, Alister J</au><au>Mitchell, Izaac</au><au>Li, Hai-Bei</au><au>Wang, Ying</au><au>Jiao, Meng-gai</au><au>Irle, Stephan</au><au>Morokuma, Keiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spanning the “Parameter Space” of Chemical Vapor Deposition Graphene Growth with Quantum Chemical Simulations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-07-07</date><risdate>2016</risdate><volume>120</volume><issue>26</issue><spage>13851</spage><epage>13864</epage><pages>13851-13864</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Graphene is a 2-dimensional allotrope of carbon with remarkable physicochemical properties. Currently, the most promising route for commercial synthesis of graphene for technological application is chemical vapor deposition (CVD). The optimization of this chemical process will potentially enable control over crucial properties, such as graphene quality and domain size. Such optimization requires a detailed atomistic understanding of how graphene nucleation and growth take place during CVD. This mechanism depends on a multitude of synthetic parameters: temperature, CVD pressure, catalyst type, facet and phase, feedstock type, and the presence of chemical etchants, to name only a few. In this feature article, we highlight recent quantum chemical simulations of chemical vapor deposition (CVD) graphene nucleation and growth. These simulations aim to systematically span this complex CVD “parameter space” toward providing the necessary understanding of graphene nucleation, to assist the optimization of CVD graphene growth.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b02673</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2016-07, Vol.120 (26), p.13851-13864
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_6b02673
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Spanning the “Parameter Space” of Chemical Vapor Deposition Graphene Growth with Quantum Chemical Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spanning%20the%20%E2%80%9CParameter%20Space%E2%80%9D%20of%20Chemical%20Vapor%20Deposition%20Graphene%20Growth%20with%20Quantum%20Chemical%20Simulations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Page,%20Alister%20J&rft.date=2016-07-07&rft.volume=120&rft.issue=26&rft.spage=13851&rft.epage=13864&rft.pages=13851-13864&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b02673&rft_dat=%3Cacs_cross%3Eb116599965%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a322t-33339dd0e862f060658958362580a58cc429b6fda14b432145745bb84c3a9ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true