Loading…
Toward Monitoring Electrochemical Reactions with Dual-Wavelength SERS: Characterization of Rhodamine 6G (R6G) Neutral Radical Species and Covalent Tethering of R6G to Silver Nanoparticles
The combination of electrochemistry (EC) and single molecule surface-enhanced Raman spectroscopy (SMSERS) has recently proven to be a sensitive method to investigate electron transfer (ET) reactions at the single molecule level. SMSERS can both detect single redox-active molecules and potentially mo...
Saved in:
Published in: | Journal of physical chemistry. C 2016-11, Vol.120 (43), p.24982-24991 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a280t-a3b5129f5c9c554f53f78ea93368970bacc6bc4c2cc71a2c40a1629630a171a13 |
---|---|
cites | cdi_FETCH-LOGICAL-a280t-a3b5129f5c9c554f53f78ea93368970bacc6bc4c2cc71a2c40a1629630a171a13 |
container_end_page | 24991 |
container_issue | 43 |
container_start_page | 24982 |
container_title | Journal of physical chemistry. C |
container_volume | 120 |
creator | Zaleski, Stephanie Cardinal, M. Fernanda Chulhai, Dhabih V Wilson, Andrew J Willets, Katherine A Jensen, Lasse Van Duyne, Richard P |
description | The combination of electrochemistry (EC) and single molecule surface-enhanced Raman spectroscopy (SMSERS) has recently proven to be a sensitive method to investigate electron transfer (ET) reactions at the single molecule level. SMSERS can both detect single redox-active molecules and potentially monitor both the oxidized (O) and reduced (R) forms of a one-electron ET reaction in a single experiment. Herein, we report progress toward complete monitoring of single ET reactions with EC-SMSERS. We first obtained the solution phase resonance Raman (RR) spectrum of the Rhodamine 6G (R6G) neutral radical (R) with thin-layer resonance Raman spectroelectrochemistry (EC-RRS). The experimental spectrum was then correlated with the spectrum calculated by density functional theory (DFT). We then describe our approach to address the problem of adsorbate (R) loss caused either by desorption or reaction of the neutral radical with trace water or oxygen during the EC-SMSERS experiment. We have investigated a covalent cross-linking reaction which tethers R6G to SERS-active substrates (Ag nanoparticles). Covalently tethered R6G is subsequently characterized by surface cyclic voltammetry (CV) and SERS. Lastly, an optimized cross-linking reaction is devised which enabled the first direct detection of the one-electron reduced form of R6G with SERS. Our findings demonstrate that SERS can simultaneously monitor both O and R of a one-electron ET reaction. |
doi_str_mv | 10.1021/acs.jpcc.6b09022 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_6b09022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c445991179</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-a3b5129f5c9c554f53f78ea93368970bacc6bc4c2cc71a2c40a1629630a171a13</originalsourceid><addsrcrecordid>eNp1kElLA0EQhQdRcL177KOCE3uZJeNNYoyCCyQRj0OlUuO0TKZDdydB_5p_zp4o3jzV9t5H8aLoVPCe4FJcArre-xKxl814waXciQ5EoWScJ2m6-9cn-X506Nw756niQh1EX1OzATtnj6bV3ljdvrFhQ-itwZoWGqFhYwL02rSObbSv2c0KmvgV1tRQ-xbmyXA8uWKDGmyQkdWf0ImZqdi4NnNY6JZYNmJn42x0zp5o5W3HhPmWPVkSanIM2jkbmDUEpmdT8jVtX-kgwesNm-hmTZY9QWuWYL3GhtxxtFdB4-jktx5FL7fD6eAufnge3Q-uH2KQfe5jULNUyKJKscA0TapUVXmfoFAq6xc5nwFiNsMEJWIuQGLCQWSyyFSoYSHUUcR_uGiNc5aqcmn1AuxHKXjZhV-G8Msu_PI3_GC5-LFsL2Zl2_Dg__JvrNeLBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Monitoring Electrochemical Reactions with Dual-Wavelength SERS: Characterization of Rhodamine 6G (R6G) Neutral Radical Species and Covalent Tethering of R6G to Silver Nanoparticles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zaleski, Stephanie ; Cardinal, M. Fernanda ; Chulhai, Dhabih V ; Wilson, Andrew J ; Willets, Katherine A ; Jensen, Lasse ; Van Duyne, Richard P</creator><creatorcontrib>Zaleski, Stephanie ; Cardinal, M. Fernanda ; Chulhai, Dhabih V ; Wilson, Andrew J ; Willets, Katherine A ; Jensen, Lasse ; Van Duyne, Richard P</creatorcontrib><description>The combination of electrochemistry (EC) and single molecule surface-enhanced Raman spectroscopy (SMSERS) has recently proven to be a sensitive method to investigate electron transfer (ET) reactions at the single molecule level. SMSERS can both detect single redox-active molecules and potentially monitor both the oxidized (O) and reduced (R) forms of a one-electron ET reaction in a single experiment. Herein, we report progress toward complete monitoring of single ET reactions with EC-SMSERS. We first obtained the solution phase resonance Raman (RR) spectrum of the Rhodamine 6G (R6G) neutral radical (R) with thin-layer resonance Raman spectroelectrochemistry (EC-RRS). The experimental spectrum was then correlated with the spectrum calculated by density functional theory (DFT). We then describe our approach to address the problem of adsorbate (R) loss caused either by desorption or reaction of the neutral radical with trace water or oxygen during the EC-SMSERS experiment. We have investigated a covalent cross-linking reaction which tethers R6G to SERS-active substrates (Ag nanoparticles). Covalently tethered R6G is subsequently characterized by surface cyclic voltammetry (CV) and SERS. Lastly, an optimized cross-linking reaction is devised which enabled the first direct detection of the one-electron reduced form of R6G with SERS. Our findings demonstrate that SERS can simultaneously monitor both O and R of a one-electron ET reaction.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b09022</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2016-11, Vol.120 (43), p.24982-24991</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-a3b5129f5c9c554f53f78ea93368970bacc6bc4c2cc71a2c40a1629630a171a13</citedby><cites>FETCH-LOGICAL-a280t-a3b5129f5c9c554f53f78ea93368970bacc6bc4c2cc71a2c40a1629630a171a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zaleski, Stephanie</creatorcontrib><creatorcontrib>Cardinal, M. Fernanda</creatorcontrib><creatorcontrib>Chulhai, Dhabih V</creatorcontrib><creatorcontrib>Wilson, Andrew J</creatorcontrib><creatorcontrib>Willets, Katherine A</creatorcontrib><creatorcontrib>Jensen, Lasse</creatorcontrib><creatorcontrib>Van Duyne, Richard P</creatorcontrib><title>Toward Monitoring Electrochemical Reactions with Dual-Wavelength SERS: Characterization of Rhodamine 6G (R6G) Neutral Radical Species and Covalent Tethering of R6G to Silver Nanoparticles</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The combination of electrochemistry (EC) and single molecule surface-enhanced Raman spectroscopy (SMSERS) has recently proven to be a sensitive method to investigate electron transfer (ET) reactions at the single molecule level. SMSERS can both detect single redox-active molecules and potentially monitor both the oxidized (O) and reduced (R) forms of a one-electron ET reaction in a single experiment. Herein, we report progress toward complete monitoring of single ET reactions with EC-SMSERS. We first obtained the solution phase resonance Raman (RR) spectrum of the Rhodamine 6G (R6G) neutral radical (R) with thin-layer resonance Raman spectroelectrochemistry (EC-RRS). The experimental spectrum was then correlated with the spectrum calculated by density functional theory (DFT). We then describe our approach to address the problem of adsorbate (R) loss caused either by desorption or reaction of the neutral radical with trace water or oxygen during the EC-SMSERS experiment. We have investigated a covalent cross-linking reaction which tethers R6G to SERS-active substrates (Ag nanoparticles). Covalently tethered R6G is subsequently characterized by surface cyclic voltammetry (CV) and SERS. Lastly, an optimized cross-linking reaction is devised which enabled the first direct detection of the one-electron reduced form of R6G with SERS. Our findings demonstrate that SERS can simultaneously monitor both O and R of a one-electron ET reaction.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kElLA0EQhQdRcL177KOCE3uZJeNNYoyCCyQRj0OlUuO0TKZDdydB_5p_zp4o3jzV9t5H8aLoVPCe4FJcArre-xKxl814waXciQ5EoWScJ2m6-9cn-X506Nw756niQh1EX1OzATtnj6bV3ljdvrFhQ-itwZoWGqFhYwL02rSObbSv2c0KmvgV1tRQ-xbmyXA8uWKDGmyQkdWf0ImZqdi4NnNY6JZYNmJn42x0zp5o5W3HhPmWPVkSanIM2jkbmDUEpmdT8jVtX-kgwesNm-hmTZY9QWuWYL3GhtxxtFdB4-jktx5FL7fD6eAufnge3Q-uH2KQfe5jULNUyKJKscA0TapUVXmfoFAq6xc5nwFiNsMEJWIuQGLCQWSyyFSoYSHUUcR_uGiNc5aqcmn1AuxHKXjZhV-G8Msu_PI3_GC5-LFsL2Zl2_Dg__JvrNeLBg</recordid><startdate>20161103</startdate><enddate>20161103</enddate><creator>Zaleski, Stephanie</creator><creator>Cardinal, M. Fernanda</creator><creator>Chulhai, Dhabih V</creator><creator>Wilson, Andrew J</creator><creator>Willets, Katherine A</creator><creator>Jensen, Lasse</creator><creator>Van Duyne, Richard P</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161103</creationdate><title>Toward Monitoring Electrochemical Reactions with Dual-Wavelength SERS: Characterization of Rhodamine 6G (R6G) Neutral Radical Species and Covalent Tethering of R6G to Silver Nanoparticles</title><author>Zaleski, Stephanie ; Cardinal, M. Fernanda ; Chulhai, Dhabih V ; Wilson, Andrew J ; Willets, Katherine A ; Jensen, Lasse ; Van Duyne, Richard P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-a3b5129f5c9c554f53f78ea93368970bacc6bc4c2cc71a2c40a1629630a171a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaleski, Stephanie</creatorcontrib><creatorcontrib>Cardinal, M. Fernanda</creatorcontrib><creatorcontrib>Chulhai, Dhabih V</creatorcontrib><creatorcontrib>Wilson, Andrew J</creatorcontrib><creatorcontrib>Willets, Katherine A</creatorcontrib><creatorcontrib>Jensen, Lasse</creatorcontrib><creatorcontrib>Van Duyne, Richard P</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaleski, Stephanie</au><au>Cardinal, M. Fernanda</au><au>Chulhai, Dhabih V</au><au>Wilson, Andrew J</au><au>Willets, Katherine A</au><au>Jensen, Lasse</au><au>Van Duyne, Richard P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Monitoring Electrochemical Reactions with Dual-Wavelength SERS: Characterization of Rhodamine 6G (R6G) Neutral Radical Species and Covalent Tethering of R6G to Silver Nanoparticles</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-11-03</date><risdate>2016</risdate><volume>120</volume><issue>43</issue><spage>24982</spage><epage>24991</epage><pages>24982-24991</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The combination of electrochemistry (EC) and single molecule surface-enhanced Raman spectroscopy (SMSERS) has recently proven to be a sensitive method to investigate electron transfer (ET) reactions at the single molecule level. SMSERS can both detect single redox-active molecules and potentially monitor both the oxidized (O) and reduced (R) forms of a one-electron ET reaction in a single experiment. Herein, we report progress toward complete monitoring of single ET reactions with EC-SMSERS. We first obtained the solution phase resonance Raman (RR) spectrum of the Rhodamine 6G (R6G) neutral radical (R) with thin-layer resonance Raman spectroelectrochemistry (EC-RRS). The experimental spectrum was then correlated with the spectrum calculated by density functional theory (DFT). We then describe our approach to address the problem of adsorbate (R) loss caused either by desorption or reaction of the neutral radical with trace water or oxygen during the EC-SMSERS experiment. We have investigated a covalent cross-linking reaction which tethers R6G to SERS-active substrates (Ag nanoparticles). Covalently tethered R6G is subsequently characterized by surface cyclic voltammetry (CV) and SERS. Lastly, an optimized cross-linking reaction is devised which enabled the first direct detection of the one-electron reduced form of R6G with SERS. Our findings demonstrate that SERS can simultaneously monitor both O and R of a one-electron ET reaction.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b09022</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2016-11, Vol.120 (43), p.24982-24991 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_6b09022 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Toward Monitoring Electrochemical Reactions with Dual-Wavelength SERS: Characterization of Rhodamine 6G (R6G) Neutral Radical Species and Covalent Tethering of R6G to Silver Nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Monitoring%20Electrochemical%20Reactions%20with%20Dual-Wavelength%20SERS:%20Characterization%20of%20Rhodamine%206G%20(R6G)%20Neutral%20Radical%20Species%20and%20Covalent%20Tethering%20of%20R6G%20to%20Silver%20Nanoparticles&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Zaleski,%20Stephanie&rft.date=2016-11-03&rft.volume=120&rft.issue=43&rft.spage=24982&rft.epage=24991&rft.pages=24982-24991&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b09022&rft_dat=%3Cacs_cross%3Ec445991179%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a280t-a3b5129f5c9c554f53f78ea93368970bacc6bc4c2cc71a2c40a1629630a171a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |