Loading…

Captodative Substitution: A Strategy for Enhancing the Conductivity of Molecular Electronic Devices

We explore a new strategy to tune the conductivity of molecular electronic devices: captodative substitution. We demonstrate that a careful design of such substitution schemes on a benzene parental structure can enhance the conductivity by almost an order of magnitude under small bias. Once this new...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2018-02, Vol.122 (6), p.3194-3200
Main Authors: Stuyver, Thijs, Zeng, Tao, Tsuji, Yuta, Fias, Stijn, Geerlings, Paul, De Proft, Frank
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We explore a new strategy to tune the conductivity of molecular electronic devices: captodative substitution. We demonstrate that a careful design of such substitution schemes on a benzene parental structure can enhance the conductivity by almost an order of magnitude under small bias. Once this new strategy has been established, we apply it to molecular wires and demonstrate that it enables the unprecedented anti-Ohmic design of wires whose conductivity increases with the length. Overall, the captodative substitution approach provides a very promising pathway toward full chemical control of the conductivity of molecules which opens up the possibility to design molecular switches with an improved on/off ratio among others.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.7b10877