Loading…

Spectroscopic Properties of Chalcopyrite Nanoparticles

An approach is presented to construct stoichiometric and saturated clusters as representative models for nanoparticles based on quantum-chemical surface energy calculations. The procedure consists of three steps. In the first step, the shape of the cluster is determined by applying the Wulff theorem...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2019-02, Vol.123 (5), p.3216-3225
Main Authors: Thinius, Sascha, Bredow, Thomas
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a280t-7da0873cd7f218334496fe3ffc74afa6e149e9a81b324f959eb1931a7d3a5c853
cites cdi_FETCH-LOGICAL-a280t-7da0873cd7f218334496fe3ffc74afa6e149e9a81b324f959eb1931a7d3a5c853
container_end_page 3225
container_issue 5
container_start_page 3216
container_title Journal of physical chemistry. C
container_volume 123
creator Thinius, Sascha
Bredow, Thomas
description An approach is presented to construct stoichiometric and saturated clusters as representative models for nanoparticles based on quantum-chemical surface energy calculations. The procedure consists of three steps. In the first step, the shape of the cluster is determined by applying the Wulff theorem based on calculated surface energies of the solid compound. Stoichiometry is recovered by adding selected atoms on the cluster surface. If the particles in solution are to be modeled, solvent molecules may be added. A global optimization is then performed to allow for full reconstruction of the cluster structure. As an example, we studied the spectroscopic properties of chalcopyrite (CuFeS2) nanoparticles and compared our calculated results to experimental O 1s X-ray photoelectron spectroscopy, IR, and optical spectra.
doi_str_mv 10.1021/acs.jpcc.8b11875
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_8b11875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c029776870</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-7da0873cd7f218334496fe3ffc74afa6e149e9a81b324f959eb1931a7d3a5c853</originalsourceid><addsrcrecordid>eNp1j0FLxDAQhYMouK7ePfYH2JppkiY5SlFXWFRQz2GaJtilbkNSD_vvzbqLN08zzHtveB8h10AroDXcok3VJlhbqQ5ASXFCFqBZXUouxOnfzuU5uUhpQ6lgFNiCNG_B2TlOyU5hsMVrnIKL8-BSMfmi_cQx33dxmF3xjNspYNbs6NIlOfM4Jnd1nEvy8XD_3q7K9cvjU3u3LrFWdC5lj1RJZnvpa1CMca4b75j3VnL02Djg2mlU0LGaey2063JRQNkzFFYJtiT08Nfmiik6b0IcvjDuDFCz5zaZ2-y5zZE7R24OkV9l-o7bXPB_-w8YoVzJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectroscopic Properties of Chalcopyrite Nanoparticles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Thinius, Sascha ; Bredow, Thomas</creator><creatorcontrib>Thinius, Sascha ; Bredow, Thomas</creatorcontrib><description>An approach is presented to construct stoichiometric and saturated clusters as representative models for nanoparticles based on quantum-chemical surface energy calculations. The procedure consists of three steps. In the first step, the shape of the cluster is determined by applying the Wulff theorem based on calculated surface energies of the solid compound. Stoichiometry is recovered by adding selected atoms on the cluster surface. If the particles in solution are to be modeled, solvent molecules may be added. A global optimization is then performed to allow for full reconstruction of the cluster structure. As an example, we studied the spectroscopic properties of chalcopyrite (CuFeS2) nanoparticles and compared our calculated results to experimental O 1s X-ray photoelectron spectroscopy, IR, and optical spectra.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b11875</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2019-02, Vol.123 (5), p.3216-3225</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-7da0873cd7f218334496fe3ffc74afa6e149e9a81b324f959eb1931a7d3a5c853</citedby><cites>FETCH-LOGICAL-a280t-7da0873cd7f218334496fe3ffc74afa6e149e9a81b324f959eb1931a7d3a5c853</cites><orcidid>0000-0003-0670-0430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thinius, Sascha</creatorcontrib><creatorcontrib>Bredow, Thomas</creatorcontrib><title>Spectroscopic Properties of Chalcopyrite Nanoparticles</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>An approach is presented to construct stoichiometric and saturated clusters as representative models for nanoparticles based on quantum-chemical surface energy calculations. The procedure consists of three steps. In the first step, the shape of the cluster is determined by applying the Wulff theorem based on calculated surface energies of the solid compound. Stoichiometry is recovered by adding selected atoms on the cluster surface. If the particles in solution are to be modeled, solvent molecules may be added. A global optimization is then performed to allow for full reconstruction of the cluster structure. As an example, we studied the spectroscopic properties of chalcopyrite (CuFeS2) nanoparticles and compared our calculated results to experimental O 1s X-ray photoelectron spectroscopy, IR, and optical spectra.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAQhYMouK7ePfYH2JppkiY5SlFXWFRQz2GaJtilbkNSD_vvzbqLN08zzHtveB8h10AroDXcok3VJlhbqQ5ASXFCFqBZXUouxOnfzuU5uUhpQ6lgFNiCNG_B2TlOyU5hsMVrnIKL8-BSMfmi_cQx33dxmF3xjNspYNbs6NIlOfM4Jnd1nEvy8XD_3q7K9cvjU3u3LrFWdC5lj1RJZnvpa1CMca4b75j3VnL02Djg2mlU0LGaey2063JRQNkzFFYJtiT08Nfmiik6b0IcvjDuDFCz5zaZ2-y5zZE7R24OkV9l-o7bXPB_-w8YoVzJ</recordid><startdate>20190207</startdate><enddate>20190207</enddate><creator>Thinius, Sascha</creator><creator>Bredow, Thomas</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0670-0430</orcidid></search><sort><creationdate>20190207</creationdate><title>Spectroscopic Properties of Chalcopyrite Nanoparticles</title><author>Thinius, Sascha ; Bredow, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-7da0873cd7f218334496fe3ffc74afa6e149e9a81b324f959eb1931a7d3a5c853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thinius, Sascha</creatorcontrib><creatorcontrib>Bredow, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thinius, Sascha</au><au>Bredow, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic Properties of Chalcopyrite Nanoparticles</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-02-07</date><risdate>2019</risdate><volume>123</volume><issue>5</issue><spage>3216</spage><epage>3225</epage><pages>3216-3225</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>An approach is presented to construct stoichiometric and saturated clusters as representative models for nanoparticles based on quantum-chemical surface energy calculations. The procedure consists of three steps. In the first step, the shape of the cluster is determined by applying the Wulff theorem based on calculated surface energies of the solid compound. Stoichiometry is recovered by adding selected atoms on the cluster surface. If the particles in solution are to be modeled, solvent molecules may be added. A global optimization is then performed to allow for full reconstruction of the cluster structure. As an example, we studied the spectroscopic properties of chalcopyrite (CuFeS2) nanoparticles and compared our calculated results to experimental O 1s X-ray photoelectron spectroscopy, IR, and optical spectra.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b11875</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0670-0430</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2019-02, Vol.123 (5), p.3216-3225
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_8b11875
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Spectroscopic Properties of Chalcopyrite Nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20Properties%20of%20Chalcopyrite%20Nanoparticles&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Thinius,%20Sascha&rft.date=2019-02-07&rft.volume=123&rft.issue=5&rft.spage=3216&rft.epage=3225&rft.pages=3216-3225&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b11875&rft_dat=%3Cacs_cross%3Ec029776870%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a280t-7da0873cd7f218334496fe3ffc74afa6e149e9a81b324f959eb1931a7d3a5c853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true