Loading…

Computational Assessment of Verdazyl Derivatives for Electrochemical Generation of Carbon-Centered Radicals

To expand the scope for carbon-centered radical generation by electrochemical activation of adducts based on stable free radicals, a test set of six simple electron-rich Kuhn verdazyl derivatives in conjunction with nine different alkyl leaving groups has been computationally assessed. Like triaziny...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2019-08, Vol.123 (33), p.20174-20180
Main Authors: Rogers, Fergus J. M, Coote, Michelle L
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To expand the scope for carbon-centered radical generation by electrochemical activation of adducts based on stable free radicals, a test set of six simple electron-rich Kuhn verdazyl derivatives in conjunction with nine different alkyl leaving groups has been computationally assessed. Like triazinyls, adducts of simple verdazyl derivatives functionalized with electron-donating substituents favor mesolytic cleavage to carbon-centered radicals under mild electrochemical potentials (−0.7 to −0.2 V vs Fc+/Fc). Electrochemical oxidation was found to reduce the bond dissociation Gibbs free energy (298 K in acetonitrile) by 70 kJ mol–1 on average, when comparing the homolytic cleavage pathway of the unoxidized adduct to the preferred mesolytic pathway of the oxidized adduct (i.e., to form either a verdazyl radical and a carbocation or a verdazyl cation and a carbon-centered radical). Considering the full thermochemical cycle, we illustrate that all the relevant free energy changes can be reduced to differences between the oxidation potentials of adducts and radicals, defining a series of criteria that govern the rational design of suitable candidates for oxidative carbon-centered radical cleavage. As a result of a tradeoff between promoting the oxidation of the adduct and enhancing the net reduction in BDFE upon oxidation, the best verdazyl derivatives for carbon-centered radical generation are those substituted with tBu substituents.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.9b06288