Loading…

Nanostructuring Bridges Semiconductor-Cocatalyst Interfacial Electron Transfer: Realizing Light-Intensity-Independent Energy Utilization and Efficient Sunlight-Driven Photocatalysis

Despite thermodynamic feasibility, the high activation energy originated from potential barriers and trap states kinetically prevent the interfacial transfer of electrons from semiconductor nanostructures to reduction cocatalysts, resulting in a lowering utilization of photogenerated charge carriers...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2020-06, Vol.11 (12), p.4644-4648
Main Authors: Wang, Zhijian, Qiao, Wei, Yuan, Mi, Li, Na, Chen, Jiazang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-d287a63cc3b16741c49f98c6345e5ca9362f67e030fb6444ce83b908ffc825293
cites cdi_FETCH-LOGICAL-c305t-d287a63cc3b16741c49f98c6345e5ca9362f67e030fb6444ce83b908ffc825293
container_end_page 4648
container_issue 12
container_start_page 4644
container_title The journal of physical chemistry letters
container_volume 11
creator Wang, Zhijian
Qiao, Wei
Yuan, Mi
Li, Na
Chen, Jiazang
description Despite thermodynamic feasibility, the high activation energy originated from potential barriers and trap states kinetically prevent the interfacial transfer of electrons from semiconductor nanostructures to reduction cocatalysts, resulting in a lowering utilization of photogenerated charge carriers in photocatalysis. Nanostructuring induced narrowing of potential barriers offers a rational solution to kinetically facilitate interfacial electron transfer by tunneling. Here, inspired by theoretical simulation, we manage to promote the separation of photogenerated charge carriers by coating the semiconductor nanostructures with homogeneous interlayer. The low activation energy for interfacial electron transfer endows photocatalysis with nearly constant quantum yields and quasi-first-order reaction to the incident photons, and grant evident superiority over the photocatalyst without interlayers especially under sunlight. In our demonstrated sunlight-driven hydrogen evolution integrated with benzylamine oxidation, the production rates for both reduction and oxidation half-reactions reach as high as ~0.77 mmol dm-2 h-1, which are ~10 time higher than that without interlayer.
doi_str_mv 10.1021/acs.jpclett.0c01043
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpclett_0c01043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32452683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-d287a63cc3b16741c49f98c6345e5ca9362f67e030fb6444ce83b908ffc825293</originalsourceid><addsrcrecordid>eNpNUe1KAzEQDKL4UX0CQfICV5NL7st_WqsWioqtv4_c3qZGrrmS5IT6Xr6fV1vFP7sDOzMsM4ScczbkLOaXCvzwfQUNhjBkwDiTYo8c80LmUcbzZP8fPiIn3r8zlhYszw7JkYhlEqe5OCZfj8q2PrgOQueMXdAbZ-oFejrDpYHW1v2hddGoBRVUs_aBTmxApxUY1dBxgxBca-ncKes1uiv6gqoxnxunqVm8hWhDt96EdY9qXGE_bKBji26xpq_B9GQVTG-hbE3HWhswG8Kss82P_taZD7T0-a0Nvz8Yf0oOtGo8nu32gLzejeejh2j6dD8ZXU8jECwJUR3nmUoFgKh4mkkOstBFDqmQCSagCpHGOs2QCaarVEoJmIuqj0hryOMkLsSAiK0vuNZ7h7pcObNUbl1yVm5KKPsSyl0J5a6EXnWxVa26aon1n-Y3dfEN3AGMbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanostructuring Bridges Semiconductor-Cocatalyst Interfacial Electron Transfer: Realizing Light-Intensity-Independent Energy Utilization and Efficient Sunlight-Driven Photocatalysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Zhijian ; Qiao, Wei ; Yuan, Mi ; Li, Na ; Chen, Jiazang</creator><creatorcontrib>Wang, Zhijian ; Qiao, Wei ; Yuan, Mi ; Li, Na ; Chen, Jiazang</creatorcontrib><description>Despite thermodynamic feasibility, the high activation energy originated from potential barriers and trap states kinetically prevent the interfacial transfer of electrons from semiconductor nanostructures to reduction cocatalysts, resulting in a lowering utilization of photogenerated charge carriers in photocatalysis. Nanostructuring induced narrowing of potential barriers offers a rational solution to kinetically facilitate interfacial electron transfer by tunneling. Here, inspired by theoretical simulation, we manage to promote the separation of photogenerated charge carriers by coating the semiconductor nanostructures with homogeneous interlayer. The low activation energy for interfacial electron transfer endows photocatalysis with nearly constant quantum yields and quasi-first-order reaction to the incident photons, and grant evident superiority over the photocatalyst without interlayers especially under sunlight. In our demonstrated sunlight-driven hydrogen evolution integrated with benzylamine oxidation, the production rates for both reduction and oxidation half-reactions reach as high as ~0.77 mmol dm-2 h-1, which are ~10 time higher than that without interlayer.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c01043</identifier><identifier>PMID: 32452683</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry letters, 2020-06, Vol.11 (12), p.4644-4648</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-d287a63cc3b16741c49f98c6345e5ca9362f67e030fb6444ce83b908ffc825293</citedby><cites>FETCH-LOGICAL-c305t-d287a63cc3b16741c49f98c6345e5ca9362f67e030fb6444ce83b908ffc825293</cites><orcidid>0000-0003-4686-9345 ; 0000-0002-9659-5242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32452683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhijian</creatorcontrib><creatorcontrib>Qiao, Wei</creatorcontrib><creatorcontrib>Yuan, Mi</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Chen, Jiazang</creatorcontrib><title>Nanostructuring Bridges Semiconductor-Cocatalyst Interfacial Electron Transfer: Realizing Light-Intensity-Independent Energy Utilization and Efficient Sunlight-Driven Photocatalysis</title><title>The journal of physical chemistry letters</title><addtitle>J Phys Chem Lett</addtitle><description>Despite thermodynamic feasibility, the high activation energy originated from potential barriers and trap states kinetically prevent the interfacial transfer of electrons from semiconductor nanostructures to reduction cocatalysts, resulting in a lowering utilization of photogenerated charge carriers in photocatalysis. Nanostructuring induced narrowing of potential barriers offers a rational solution to kinetically facilitate interfacial electron transfer by tunneling. Here, inspired by theoretical simulation, we manage to promote the separation of photogenerated charge carriers by coating the semiconductor nanostructures with homogeneous interlayer. The low activation energy for interfacial electron transfer endows photocatalysis with nearly constant quantum yields and quasi-first-order reaction to the incident photons, and grant evident superiority over the photocatalyst without interlayers especially under sunlight. In our demonstrated sunlight-driven hydrogen evolution integrated with benzylamine oxidation, the production rates for both reduction and oxidation half-reactions reach as high as ~0.77 mmol dm-2 h-1, which are ~10 time higher than that without interlayer.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNUe1KAzEQDKL4UX0CQfICV5NL7st_WqsWioqtv4_c3qZGrrmS5IT6Xr6fV1vFP7sDOzMsM4ScczbkLOaXCvzwfQUNhjBkwDiTYo8c80LmUcbzZP8fPiIn3r8zlhYszw7JkYhlEqe5OCZfj8q2PrgOQueMXdAbZ-oFejrDpYHW1v2hddGoBRVUs_aBTmxApxUY1dBxgxBca-ncKes1uiv6gqoxnxunqVm8hWhDt96EdY9qXGE_bKBji26xpq_B9GQVTG-hbE3HWhswG8Kss82P_taZD7T0-a0Nvz8Yf0oOtGo8nu32gLzejeejh2j6dD8ZXU8jECwJUR3nmUoFgKh4mkkOstBFDqmQCSagCpHGOs2QCaarVEoJmIuqj0hryOMkLsSAiK0vuNZ7h7pcObNUbl1yVm5KKPsSyl0J5a6EXnWxVa26aon1n-Y3dfEN3AGMbQ</recordid><startdate>20200618</startdate><enddate>20200618</enddate><creator>Wang, Zhijian</creator><creator>Qiao, Wei</creator><creator>Yuan, Mi</creator><creator>Li, Na</creator><creator>Chen, Jiazang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4686-9345</orcidid><orcidid>https://orcid.org/0000-0002-9659-5242</orcidid></search><sort><creationdate>20200618</creationdate><title>Nanostructuring Bridges Semiconductor-Cocatalyst Interfacial Electron Transfer: Realizing Light-Intensity-Independent Energy Utilization and Efficient Sunlight-Driven Photocatalysis</title><author>Wang, Zhijian ; Qiao, Wei ; Yuan, Mi ; Li, Na ; Chen, Jiazang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-d287a63cc3b16741c49f98c6345e5ca9362f67e030fb6444ce83b908ffc825293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhijian</creatorcontrib><creatorcontrib>Qiao, Wei</creatorcontrib><creatorcontrib>Yuan, Mi</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Chen, Jiazang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhijian</au><au>Qiao, Wei</au><au>Yuan, Mi</au><au>Li, Na</au><au>Chen, Jiazang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructuring Bridges Semiconductor-Cocatalyst Interfacial Electron Transfer: Realizing Light-Intensity-Independent Energy Utilization and Efficient Sunlight-Driven Photocatalysis</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J Phys Chem Lett</addtitle><date>2020-06-18</date><risdate>2020</risdate><volume>11</volume><issue>12</issue><spage>4644</spage><epage>4648</epage><pages>4644-4648</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Despite thermodynamic feasibility, the high activation energy originated from potential barriers and trap states kinetically prevent the interfacial transfer of electrons from semiconductor nanostructures to reduction cocatalysts, resulting in a lowering utilization of photogenerated charge carriers in photocatalysis. Nanostructuring induced narrowing of potential barriers offers a rational solution to kinetically facilitate interfacial electron transfer by tunneling. Here, inspired by theoretical simulation, we manage to promote the separation of photogenerated charge carriers by coating the semiconductor nanostructures with homogeneous interlayer. The low activation energy for interfacial electron transfer endows photocatalysis with nearly constant quantum yields and quasi-first-order reaction to the incident photons, and grant evident superiority over the photocatalyst without interlayers especially under sunlight. In our demonstrated sunlight-driven hydrogen evolution integrated with benzylamine oxidation, the production rates for both reduction and oxidation half-reactions reach as high as ~0.77 mmol dm-2 h-1, which are ~10 time higher than that without interlayer.</abstract><cop>United States</cop><pmid>32452683</pmid><doi>10.1021/acs.jpclett.0c01043</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4686-9345</orcidid><orcidid>https://orcid.org/0000-0002-9659-5242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2020-06, Vol.11 (12), p.4644-4648
issn 1948-7185
1948-7185
language eng
recordid cdi_crossref_primary_10_1021_acs_jpclett_0c01043
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Nanostructuring Bridges Semiconductor-Cocatalyst Interfacial Electron Transfer: Realizing Light-Intensity-Independent Energy Utilization and Efficient Sunlight-Driven Photocatalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructuring%20Bridges%20Semiconductor-Cocatalyst%20Interfacial%20Electron%20Transfer:%20Realizing%20Light-Intensity-Independent%20Energy%20Utilization%20and%20Efficient%20Sunlight-Driven%20Photocatalysis&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Wang,%20Zhijian&rft.date=2020-06-18&rft.volume=11&rft.issue=12&rft.spage=4644&rft.epage=4648&rft.pages=4644-4648&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c01043&rft_dat=%3Cpubmed_cross%3E32452683%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-d287a63cc3b16741c49f98c6345e5ca9362f67e030fb6444ce83b908ffc825293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32452683&rfr_iscdi=true