Loading…

Correlation of Coexistent Charge Transfer States in F 4 TCNQ-Doped P3HT with Microstructure

Understanding the interaction between organic semiconductors (OSCs) and dopants in thin films is critical for device optimization. The proclivity of a doped OSC to form free charges is predicated on the chemical and electronic interactions that occur between dopant and host. To date, doping has been...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2018-12, Vol.9 (23), p.6871-6877
Main Authors: Neelamraju, Bharati, Watts, Kristen E, Pemberton, Jeanne E, Ratcliff, Erin L
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c187t-13a2155608d06e28e4e1c794fe6fbf67db926e92772c92b5c7990cf83e67c0283
cites cdi_FETCH-LOGICAL-c187t-13a2155608d06e28e4e1c794fe6fbf67db926e92772c92b5c7990cf83e67c0283
container_end_page 6877
container_issue 23
container_start_page 6871
container_title The journal of physical chemistry letters
container_volume 9
creator Neelamraju, Bharati
Watts, Kristen E
Pemberton, Jeanne E
Ratcliff, Erin L
description Understanding the interaction between organic semiconductors (OSCs) and dopants in thin films is critical for device optimization. The proclivity of a doped OSC to form free charges is predicated on the chemical and electronic interactions that occur between dopant and host. To date, doping has been assumed to occur via one of two mechanistic pathways: an integer charge transfer (ICT) between the OSC and dopant or hybridization of the frontier orbitals of both molecules to form a partial charge transfer complex (CPX). Using a combination of spectroscopies, we demonstrate that CPX and ICT states are present simultaneously in F TCNQ-doped P3HT films and that the nature of the charge transfer interaction is strongly dependent on the local energetic environment. Our results suggest a multiphase model, where the local charge transfer mechanism is defined by the electronic driving force, governed by local microstructure in regioregular and regiorandom P3HT.
doi_str_mv 10.1021/acs.jpclett.8b03104
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpclett_8b03104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30450910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-13a2155608d06e28e4e1c794fe6fbf67db926e92772c92b5c7990cf83e67c0283</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoTqe_QJD8gc6TpG2SS6nOCfML65UXJU1PXMfWjiRD_fdubIpX54XD877wEHLBYMSAsytjw2i-sguMcaRqEAzSA3LCdKoSyVR2-C8PyGkIc4Bcg5LHZCAgzUAzOCHvRe89Lkxs-472jhY9frUhYhdpMTP-A2npTRccevoaTcRA246OaUrL4vEluelX2NBnMSnpZxtn9KG1vg_Rr21cezwjR84sAp7v75C8jW_LYpJMn-7ui-tpYpmSMWHCcJZlOagGcuQKU2RW6tRh7mqXy6bWPEfNpeRW8zrb_DRYpwTm0gJXYkjErnc7Hjy6auXbpfHfFYNqq6raqKr2qqq9qg11uaNW63qJzR_z60b8AGtuZ14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correlation of Coexistent Charge Transfer States in F 4 TCNQ-Doped P3HT with Microstructure</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Neelamraju, Bharati ; Watts, Kristen E ; Pemberton, Jeanne E ; Ratcliff, Erin L</creator><creatorcontrib>Neelamraju, Bharati ; Watts, Kristen E ; Pemberton, Jeanne E ; Ratcliff, Erin L</creatorcontrib><description>Understanding the interaction between organic semiconductors (OSCs) and dopants in thin films is critical for device optimization. The proclivity of a doped OSC to form free charges is predicated on the chemical and electronic interactions that occur between dopant and host. To date, doping has been assumed to occur via one of two mechanistic pathways: an integer charge transfer (ICT) between the OSC and dopant or hybridization of the frontier orbitals of both molecules to form a partial charge transfer complex (CPX). Using a combination of spectroscopies, we demonstrate that CPX and ICT states are present simultaneously in F TCNQ-doped P3HT films and that the nature of the charge transfer interaction is strongly dependent on the local energetic environment. Our results suggest a multiphase model, where the local charge transfer mechanism is defined by the electronic driving force, governed by local microstructure in regioregular and regiorandom P3HT.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.8b03104</identifier><identifier>PMID: 30450910</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry letters, 2018-12, Vol.9 (23), p.6871-6877</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-13a2155608d06e28e4e1c794fe6fbf67db926e92772c92b5c7990cf83e67c0283</citedby><cites>FETCH-LOGICAL-c187t-13a2155608d06e28e4e1c794fe6fbf67db926e92772c92b5c7990cf83e67c0283</cites><orcidid>0000-0002-1710-2922 ; 0000-0002-2360-8436 ; 0000-0001-9019-0132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30450910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neelamraju, Bharati</creatorcontrib><creatorcontrib>Watts, Kristen E</creatorcontrib><creatorcontrib>Pemberton, Jeanne E</creatorcontrib><creatorcontrib>Ratcliff, Erin L</creatorcontrib><title>Correlation of Coexistent Charge Transfer States in F 4 TCNQ-Doped P3HT with Microstructure</title><title>The journal of physical chemistry letters</title><addtitle>J Phys Chem Lett</addtitle><description>Understanding the interaction between organic semiconductors (OSCs) and dopants in thin films is critical for device optimization. The proclivity of a doped OSC to form free charges is predicated on the chemical and electronic interactions that occur between dopant and host. To date, doping has been assumed to occur via one of two mechanistic pathways: an integer charge transfer (ICT) between the OSC and dopant or hybridization of the frontier orbitals of both molecules to form a partial charge transfer complex (CPX). Using a combination of spectroscopies, we demonstrate that CPX and ICT states are present simultaneously in F TCNQ-doped P3HT films and that the nature of the charge transfer interaction is strongly dependent on the local energetic environment. Our results suggest a multiphase model, where the local charge transfer mechanism is defined by the electronic driving force, governed by local microstructure in regioregular and regiorandom P3HT.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoTqe_QJD8gc6TpG2SS6nOCfML65UXJU1PXMfWjiRD_fdubIpX54XD877wEHLBYMSAsytjw2i-sguMcaRqEAzSA3LCdKoSyVR2-C8PyGkIc4Bcg5LHZCAgzUAzOCHvRe89Lkxs-472jhY9frUhYhdpMTP-A2npTRccevoaTcRA246OaUrL4vEluelX2NBnMSnpZxtn9KG1vg_Rr21cezwjR84sAp7v75C8jW_LYpJMn-7ui-tpYpmSMWHCcJZlOagGcuQKU2RW6tRh7mqXy6bWPEfNpeRW8zrb_DRYpwTm0gJXYkjErnc7Hjy6auXbpfHfFYNqq6raqKr2qqq9qg11uaNW63qJzR_z60b8AGtuZ14</recordid><startdate>20181206</startdate><enddate>20181206</enddate><creator>Neelamraju, Bharati</creator><creator>Watts, Kristen E</creator><creator>Pemberton, Jeanne E</creator><creator>Ratcliff, Erin L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1710-2922</orcidid><orcidid>https://orcid.org/0000-0002-2360-8436</orcidid><orcidid>https://orcid.org/0000-0001-9019-0132</orcidid></search><sort><creationdate>20181206</creationdate><title>Correlation of Coexistent Charge Transfer States in F 4 TCNQ-Doped P3HT with Microstructure</title><author>Neelamraju, Bharati ; Watts, Kristen E ; Pemberton, Jeanne E ; Ratcliff, Erin L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-13a2155608d06e28e4e1c794fe6fbf67db926e92772c92b5c7990cf83e67c0283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neelamraju, Bharati</creatorcontrib><creatorcontrib>Watts, Kristen E</creatorcontrib><creatorcontrib>Pemberton, Jeanne E</creatorcontrib><creatorcontrib>Ratcliff, Erin L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neelamraju, Bharati</au><au>Watts, Kristen E</au><au>Pemberton, Jeanne E</au><au>Ratcliff, Erin L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation of Coexistent Charge Transfer States in F 4 TCNQ-Doped P3HT with Microstructure</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J Phys Chem Lett</addtitle><date>2018-12-06</date><risdate>2018</risdate><volume>9</volume><issue>23</issue><spage>6871</spage><epage>6877</epage><pages>6871-6877</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Understanding the interaction between organic semiconductors (OSCs) and dopants in thin films is critical for device optimization. The proclivity of a doped OSC to form free charges is predicated on the chemical and electronic interactions that occur between dopant and host. To date, doping has been assumed to occur via one of two mechanistic pathways: an integer charge transfer (ICT) between the OSC and dopant or hybridization of the frontier orbitals of both molecules to form a partial charge transfer complex (CPX). Using a combination of spectroscopies, we demonstrate that CPX and ICT states are present simultaneously in F TCNQ-doped P3HT films and that the nature of the charge transfer interaction is strongly dependent on the local energetic environment. Our results suggest a multiphase model, where the local charge transfer mechanism is defined by the electronic driving force, governed by local microstructure in regioregular and regiorandom P3HT.</abstract><cop>United States</cop><pmid>30450910</pmid><doi>10.1021/acs.jpclett.8b03104</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1710-2922</orcidid><orcidid>https://orcid.org/0000-0002-2360-8436</orcidid><orcidid>https://orcid.org/0000-0001-9019-0132</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2018-12, Vol.9 (23), p.6871-6877
issn 1948-7185
1948-7185
language eng
recordid cdi_crossref_primary_10_1021_acs_jpclett_8b03104
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Correlation of Coexistent Charge Transfer States in F 4 TCNQ-Doped P3HT with Microstructure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20of%20Coexistent%20Charge%20Transfer%20States%20in%20F%204%20TCNQ-Doped%20P3HT%20with%20Microstructure&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Neelamraju,%20Bharati&rft.date=2018-12-06&rft.volume=9&rft.issue=23&rft.spage=6871&rft.epage=6877&rft.pages=6871-6877&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.8b03104&rft_dat=%3Cpubmed_cross%3E30450910%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c187t-13a2155608d06e28e4e1c794fe6fbf67db926e92772c92b5c7990cf83e67c0283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30450910&rfr_iscdi=true