Loading…

Possible Charge-Transfer-Induced Conductivity Enhancement in TiO 2 Microtubes Decorated with Perovskite CsPbBr 3 Nanocrystals

Halide perovskite CsPbBr quantum dots (QDs) were synthesized via supersaturated recrystallization process and deposited on the surface of TiO microtubes forming local nano-heterostructures. Structural, morphological, and optical characterizations confirm the formation of heterostructures comprised o...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2020-05, Vol.36 (19), p.5408-5416
Main Authors: Gomez, Cynthia Marina, Pan, Shuang, Braga, Helder Moreira, de Oliveira, Leonardo Soares, Dalpian, Gustavo Martini, Biesold-McGee, Gill Vincent, Lin, Zhiqun, Santos, Sydney Ferreira, Souza, Jose Antonio
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Halide perovskite CsPbBr quantum dots (QDs) were synthesized via supersaturated recrystallization process and deposited on the surface of TiO microtubes forming local nano-heterostructures. Structural, morphological, and optical characterizations confirm the formation of heterostructures comprised of TiO microtube decorated with green-emitting CsPbBr nanocrystals. Optical characterizations reveal the presence of two band gap energies corresponding to CsPbBr (2.34 eV) and rutile-TiO (2.97 eV). Time-resolved photoluminescence decays indicate different charge dynamics when comparing both samples, revealing the interaction of CsPbBr QDs with the microtube surface and thus confirming the formation of local nano-heterostructures. The voltage-current measurements in the dark show an abrupt decrease in the electrical resistivity of the CsPbBr /TiO heterostructure reaching almost 95% when compared with the pristine TiO microtube. This significant increase in the electrical conductivity is associated with charge transfer from perovskite nanocrystals into the semiconductor microtube, which can be used to fine tune its electronic properties. Besides controlling the electrical conductivity, decoration with semiconducting nanocrystals makes the hollow heterostructure photoluminescent, which can be classified as a multifunctionalization in a single device.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.9b03871