Loading…

Simulation of Elastomers by Slip-Spring Dissipative Particle Dynamics

We study elastomeric networks using dissipative-particle-dynamics simulations. This soft-core method gives access to mesoscopic time and length scales and is potentially capable to study complex systems such as network defects and gels, but the unmodified method underestimates topological interactio...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2021-06, Vol.54 (11), p.5155-5166
Main Authors: Schneider, Jurek, Fleck, Frank, Karimi-Varzaneh, Hossein Ali, Müller-Plathe, Florian
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a288t-54e4f4bc7315f324916f27f74dec7236367dd1065dc889acabb78d5b6f9b4d563
cites cdi_FETCH-LOGICAL-a288t-54e4f4bc7315f324916f27f74dec7236367dd1065dc889acabb78d5b6f9b4d563
container_end_page 5166
container_issue 11
container_start_page 5155
container_title Macromolecules
container_volume 54
creator Schneider, Jurek
Fleck, Frank
Karimi-Varzaneh, Hossein Ali
Müller-Plathe, Florian
description We study elastomeric networks using dissipative-particle-dynamics simulations. This soft-core method gives access to mesoscopic time and length scales and is potentially capable to study complex systems such as network defects and gels, but the unmodified method underestimates topological interactions and can only model phantom networks. In this work, we study the capability of slip springs to recover topological effects of network strands. We show that slip springs with a restricted mobility restore the topological contributions of trapped entanglements. Uniaxial strain experiments give access to the cross-link and entanglement contribution to the shear modulus of a slip-spring model network. We find these contributions to coincide with those reported for comparable hard-core Kremer–Grest networks (Gula et al. Macromolecules 2020, 53, 6907–6927). For network strands longer than the chains’ entanglement length, the contribution of slip springs to the shear modulus equals the plateau modulus of the un-cross-linked precursor melt. However, a constant number of slip springs overestimates the shear modulus for high cross-link densities. To probe their applicability, we successfully compare our simulations with experimental polyisoprene rubbers: a network obtained by parameter-free cross-linking of a simulated polyisoprene melt reproduces the viscoelastic moduli of experimental rubbers.
doi_str_mv 10.1021/acs.macromol.1c00567
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_1c00567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e84040433</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-54e4f4bc7315f324916f27f74dec7236367dd1065dc889acabb78d5b6f9b4d563</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwByz8Awl-O1miNlCkSiAF1pbt2MhVXrJTpPw9qVq2rGYxc67uHAAeMcoxIvhJ25R32sahG9ocW4S4kFdghTlBGS8ovwYrhAjLSlLKW3CX0gEhjDmjK1DVoTu2egpDDwcPq1anaehcTNDMsG7DmNVjDP033IaUwrgc_jj4oeMUbOvgdu51F2y6Bzdet8k9XOYafL1Un5tdtn9_fds87zNNimLKOHPMM2MlxdxTwkosPJFessZZSaigQjYNRoI3tihKbbUxsmi4Eb40rOGCrgE75y6_phSdV0u5TsdZYaROKtSiQv2pUBcVC4bO2Gl7GI6xX0r-j_wCgRlm1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of Elastomers by Slip-Spring Dissipative Particle Dynamics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Schneider, Jurek ; Fleck, Frank ; Karimi-Varzaneh, Hossein Ali ; Müller-Plathe, Florian</creator><creatorcontrib>Schneider, Jurek ; Fleck, Frank ; Karimi-Varzaneh, Hossein Ali ; Müller-Plathe, Florian</creatorcontrib><description>We study elastomeric networks using dissipative-particle-dynamics simulations. This soft-core method gives access to mesoscopic time and length scales and is potentially capable to study complex systems such as network defects and gels, but the unmodified method underestimates topological interactions and can only model phantom networks. In this work, we study the capability of slip springs to recover topological effects of network strands. We show that slip springs with a restricted mobility restore the topological contributions of trapped entanglements. Uniaxial strain experiments give access to the cross-link and entanglement contribution to the shear modulus of a slip-spring model network. We find these contributions to coincide with those reported for comparable hard-core Kremer–Grest networks (Gula et al. Macromolecules 2020, 53, 6907–6927). For network strands longer than the chains’ entanglement length, the contribution of slip springs to the shear modulus equals the plateau modulus of the un-cross-linked precursor melt. However, a constant number of slip springs overestimates the shear modulus for high cross-link densities. To probe their applicability, we successfully compare our simulations with experimental polyisoprene rubbers: a network obtained by parameter-free cross-linking of a simulated polyisoprene melt reproduces the viscoelastic moduli of experimental rubbers.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.1c00567</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2021-06, Vol.54 (11), p.5155-5166</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-54e4f4bc7315f324916f27f74dec7236367dd1065dc889acabb78d5b6f9b4d563</citedby><cites>FETCH-LOGICAL-a288t-54e4f4bc7315f324916f27f74dec7236367dd1065dc889acabb78d5b6f9b4d563</cites><orcidid>0000-0002-0286-1678 ; 0000-0002-9111-7786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schneider, Jurek</creatorcontrib><creatorcontrib>Fleck, Frank</creatorcontrib><creatorcontrib>Karimi-Varzaneh, Hossein Ali</creatorcontrib><creatorcontrib>Müller-Plathe, Florian</creatorcontrib><title>Simulation of Elastomers by Slip-Spring Dissipative Particle Dynamics</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>We study elastomeric networks using dissipative-particle-dynamics simulations. This soft-core method gives access to mesoscopic time and length scales and is potentially capable to study complex systems such as network defects and gels, but the unmodified method underestimates topological interactions and can only model phantom networks. In this work, we study the capability of slip springs to recover topological effects of network strands. We show that slip springs with a restricted mobility restore the topological contributions of trapped entanglements. Uniaxial strain experiments give access to the cross-link and entanglement contribution to the shear modulus of a slip-spring model network. We find these contributions to coincide with those reported for comparable hard-core Kremer–Grest networks (Gula et al. Macromolecules 2020, 53, 6907–6927). For network strands longer than the chains’ entanglement length, the contribution of slip springs to the shear modulus equals the plateau modulus of the un-cross-linked precursor melt. However, a constant number of slip springs overestimates the shear modulus for high cross-link densities. To probe their applicability, we successfully compare our simulations with experimental polyisoprene rubbers: a network obtained by parameter-free cross-linking of a simulated polyisoprene melt reproduces the viscoelastic moduli of experimental rubbers.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwByz8Awl-O1miNlCkSiAF1pbt2MhVXrJTpPw9qVq2rGYxc67uHAAeMcoxIvhJ25R32sahG9ocW4S4kFdghTlBGS8ovwYrhAjLSlLKW3CX0gEhjDmjK1DVoTu2egpDDwcPq1anaehcTNDMsG7DmNVjDP033IaUwrgc_jj4oeMUbOvgdu51F2y6Bzdet8k9XOYafL1Un5tdtn9_fds87zNNimLKOHPMM2MlxdxTwkosPJFessZZSaigQjYNRoI3tihKbbUxsmi4Eb40rOGCrgE75y6_phSdV0u5TsdZYaROKtSiQv2pUBcVC4bO2Gl7GI6xX0r-j_wCgRlm1Q</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Schneider, Jurek</creator><creator>Fleck, Frank</creator><creator>Karimi-Varzaneh, Hossein Ali</creator><creator>Müller-Plathe, Florian</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0286-1678</orcidid><orcidid>https://orcid.org/0000-0002-9111-7786</orcidid></search><sort><creationdate>20210608</creationdate><title>Simulation of Elastomers by Slip-Spring Dissipative Particle Dynamics</title><author>Schneider, Jurek ; Fleck, Frank ; Karimi-Varzaneh, Hossein Ali ; Müller-Plathe, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-54e4f4bc7315f324916f27f74dec7236367dd1065dc889acabb78d5b6f9b4d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Jurek</creatorcontrib><creatorcontrib>Fleck, Frank</creatorcontrib><creatorcontrib>Karimi-Varzaneh, Hossein Ali</creatorcontrib><creatorcontrib>Müller-Plathe, Florian</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Jurek</au><au>Fleck, Frank</au><au>Karimi-Varzaneh, Hossein Ali</au><au>Müller-Plathe, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Elastomers by Slip-Spring Dissipative Particle Dynamics</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2021-06-08</date><risdate>2021</risdate><volume>54</volume><issue>11</issue><spage>5155</spage><epage>5166</epage><pages>5155-5166</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>We study elastomeric networks using dissipative-particle-dynamics simulations. This soft-core method gives access to mesoscopic time and length scales and is potentially capable to study complex systems such as network defects and gels, but the unmodified method underestimates topological interactions and can only model phantom networks. In this work, we study the capability of slip springs to recover topological effects of network strands. We show that slip springs with a restricted mobility restore the topological contributions of trapped entanglements. Uniaxial strain experiments give access to the cross-link and entanglement contribution to the shear modulus of a slip-spring model network. We find these contributions to coincide with those reported for comparable hard-core Kremer–Grest networks (Gula et al. Macromolecules 2020, 53, 6907–6927). For network strands longer than the chains’ entanglement length, the contribution of slip springs to the shear modulus equals the plateau modulus of the un-cross-linked precursor melt. However, a constant number of slip springs overestimates the shear modulus for high cross-link densities. To probe their applicability, we successfully compare our simulations with experimental polyisoprene rubbers: a network obtained by parameter-free cross-linking of a simulated polyisoprene melt reproduces the viscoelastic moduli of experimental rubbers.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.1c00567</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0286-1678</orcidid><orcidid>https://orcid.org/0000-0002-9111-7786</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2021-06, Vol.54 (11), p.5155-5166
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_acs_macromol_1c00567
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Simulation of Elastomers by Slip-Spring Dissipative Particle Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Elastomers%20by%20Slip-Spring%20Dissipative%20Particle%20Dynamics&rft.jtitle=Macromolecules&rft.au=Schneider,%20Jurek&rft.date=2021-06-08&rft.volume=54&rft.issue=11&rft.spage=5155&rft.epage=5166&rft.pages=5155-5166&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.1c00567&rft_dat=%3Cacs_cross%3Ee84040433%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a288t-54e4f4bc7315f324916f27f74dec7236367dd1065dc889acabb78d5b6f9b4d563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true