Loading…

Toward In Silico Design of Highly Tunable Liquid Crystal Elastomers

In this work, a two-component acrylate liquid crystal elastomer, with varying composition and templating phase, is synthesized in the laboratory and investigated in parallel using atomistic molecular dynamics simulations. The anisotropic nature of both the mono- and bifunctional acrylates used in th...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2022-06, Vol.55 (11), p.4320-4330
Main Authors: Jull, Ethan I. L., Mandle, Richard J., Raistrick, Thomas, Zhang, Zhaopeng, Hine, Peter J., Gleeson, Helen F.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a2537-1f024d3df1f4afb240dab4c77fe5cee67d73bbf84f4730a01b5b990ac469ed6a3
cites cdi_FETCH-LOGICAL-a2537-1f024d3df1f4afb240dab4c77fe5cee67d73bbf84f4730a01b5b990ac469ed6a3
container_end_page 4330
container_issue 11
container_start_page 4320
container_title Macromolecules
container_volume 55
creator Jull, Ethan I. L.
Mandle, Richard J.
Raistrick, Thomas
Zhang, Zhaopeng
Hine, Peter J.
Gleeson, Helen F.
description In this work, a two-component acrylate liquid crystal elastomer, with varying composition and templating phase, is synthesized in the laboratory and investigated in parallel using atomistic molecular dynamics simulations. The anisotropic nature of both the mono- and bifunctional acrylates used in this study enables a large tunability in the compositional range while still retaining liquid crystalline properties in the final elastomer. The use of simulations allows important evaluation and comparison of physical properties such as glass transition temperature, nematic to isotropic phase transition temperature, and order parameter. The dependence of physical properties (glass transition, nematic to isotropic transition, order parameter, coefficient of thermal expansion, and mechanical properties) is established as a function of chemical composition, showing a high degree of tunability. Interestingly, the templating phase (nematic or isotropic) is also shown to impact the subsequent elastomer properties, with excellent agreement shown here between experiments and simulations. The in silico approach to polymerization, coupled with excellent comparison with the experimental system, represents a new methodology for the targeted design of liquid crystal elastomers with specific physical properties.
doi_str_mv 10.1021/acs.macromol.2c00587
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_2c00587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a666192775</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2537-1f024d3df1f4afb240dab4c77fe5cee67d73bbf84f4730a01b5b990ac469ed6a3</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYi-gYu-wODtH2WWZkQhIXEhrif9xZLOVFuI4e0dAmxdncXNd3POh9AjgQkBSp6UKZNOmZy6FCfUAIiZvEIjIihUYsbENRoBUF7VtJa36K6ULQAhgrMRatbpV2WLlz3-CDGYhF9cCZseJ48XYfMVD3i975WODq_Czz5Y3ORD2amI51GVXepcLvfoxqtY3MM5x-jzdb5uFtXq_W3ZPK8qRQWTFfFDB8usJ54rrykHqzQ3UnonjHNTaSXT2s-455KBAqKFrmtQhk9rZ6eKjRE__R2WlpKdb79z6FQ-tATao4h2ENFeRLRnEQMGJ-x43aZ97oeS_yN_LwZmCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward In Silico Design of Highly Tunable Liquid Crystal Elastomers</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Jull, Ethan I. L. ; Mandle, Richard J. ; Raistrick, Thomas ; Zhang, Zhaopeng ; Hine, Peter J. ; Gleeson, Helen F.</creator><creatorcontrib>Jull, Ethan I. L. ; Mandle, Richard J. ; Raistrick, Thomas ; Zhang, Zhaopeng ; Hine, Peter J. ; Gleeson, Helen F.</creatorcontrib><description>In this work, a two-component acrylate liquid crystal elastomer, with varying composition and templating phase, is synthesized in the laboratory and investigated in parallel using atomistic molecular dynamics simulations. The anisotropic nature of both the mono- and bifunctional acrylates used in this study enables a large tunability in the compositional range while still retaining liquid crystalline properties in the final elastomer. The use of simulations allows important evaluation and comparison of physical properties such as glass transition temperature, nematic to isotropic phase transition temperature, and order parameter. The dependence of physical properties (glass transition, nematic to isotropic transition, order parameter, coefficient of thermal expansion, and mechanical properties) is established as a function of chemical composition, showing a high degree of tunability. Interestingly, the templating phase (nematic or isotropic) is also shown to impact the subsequent elastomer properties, with excellent agreement shown here between experiments and simulations. The in silico approach to polymerization, coupled with excellent comparison with the experimental system, represents a new methodology for the targeted design of liquid crystal elastomers with specific physical properties.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.2c00587</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2022-06, Vol.55 (11), p.4320-4330</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2537-1f024d3df1f4afb240dab4c77fe5cee67d73bbf84f4730a01b5b990ac469ed6a3</citedby><cites>FETCH-LOGICAL-a2537-1f024d3df1f4afb240dab4c77fe5cee67d73bbf84f4730a01b5b990ac469ed6a3</cites><orcidid>0000-0002-6227-6550 ; 0000-0002-7494-2100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jull, Ethan I. L.</creatorcontrib><creatorcontrib>Mandle, Richard J.</creatorcontrib><creatorcontrib>Raistrick, Thomas</creatorcontrib><creatorcontrib>Zhang, Zhaopeng</creatorcontrib><creatorcontrib>Hine, Peter J.</creatorcontrib><creatorcontrib>Gleeson, Helen F.</creatorcontrib><title>Toward In Silico Design of Highly Tunable Liquid Crystal Elastomers</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>In this work, a two-component acrylate liquid crystal elastomer, with varying composition and templating phase, is synthesized in the laboratory and investigated in parallel using atomistic molecular dynamics simulations. The anisotropic nature of both the mono- and bifunctional acrylates used in this study enables a large tunability in the compositional range while still retaining liquid crystalline properties in the final elastomer. The use of simulations allows important evaluation and comparison of physical properties such as glass transition temperature, nematic to isotropic phase transition temperature, and order parameter. The dependence of physical properties (glass transition, nematic to isotropic transition, order parameter, coefficient of thermal expansion, and mechanical properties) is established as a function of chemical composition, showing a high degree of tunability. Interestingly, the templating phase (nematic or isotropic) is also shown to impact the subsequent elastomer properties, with excellent agreement shown here between experiments and simulations. The in silico approach to polymerization, coupled with excellent comparison with the experimental system, represents a new methodology for the targeted design of liquid crystal elastomers with specific physical properties.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEUhRujiYi-gYu-wODtH2WWZkQhIXEhrif9xZLOVFuI4e0dAmxdncXNd3POh9AjgQkBSp6UKZNOmZy6FCfUAIiZvEIjIihUYsbENRoBUF7VtJa36K6ULQAhgrMRatbpV2WLlz3-CDGYhF9cCZseJ48XYfMVD3i975WODq_Czz5Y3ORD2amI51GVXepcLvfoxqtY3MM5x-jzdb5uFtXq_W3ZPK8qRQWTFfFDB8usJ54rrykHqzQ3UnonjHNTaSXT2s-455KBAqKFrmtQhk9rZ6eKjRE__R2WlpKdb79z6FQ-tATao4h2ENFeRLRnEQMGJ-x43aZ97oeS_yN_LwZmCA</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>Jull, Ethan I. L.</creator><creator>Mandle, Richard J.</creator><creator>Raistrick, Thomas</creator><creator>Zhang, Zhaopeng</creator><creator>Hine, Peter J.</creator><creator>Gleeson, Helen F.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6227-6550</orcidid><orcidid>https://orcid.org/0000-0002-7494-2100</orcidid></search><sort><creationdate>20220614</creationdate><title>Toward In Silico Design of Highly Tunable Liquid Crystal Elastomers</title><author>Jull, Ethan I. L. ; Mandle, Richard J. ; Raistrick, Thomas ; Zhang, Zhaopeng ; Hine, Peter J. ; Gleeson, Helen F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2537-1f024d3df1f4afb240dab4c77fe5cee67d73bbf84f4730a01b5b990ac469ed6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jull, Ethan I. L.</creatorcontrib><creatorcontrib>Mandle, Richard J.</creatorcontrib><creatorcontrib>Raistrick, Thomas</creatorcontrib><creatorcontrib>Zhang, Zhaopeng</creatorcontrib><creatorcontrib>Hine, Peter J.</creatorcontrib><creatorcontrib>Gleeson, Helen F.</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jull, Ethan I. L.</au><au>Mandle, Richard J.</au><au>Raistrick, Thomas</au><au>Zhang, Zhaopeng</au><au>Hine, Peter J.</au><au>Gleeson, Helen F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward In Silico Design of Highly Tunable Liquid Crystal Elastomers</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2022-06-14</date><risdate>2022</risdate><volume>55</volume><issue>11</issue><spage>4320</spage><epage>4330</epage><pages>4320-4330</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>In this work, a two-component acrylate liquid crystal elastomer, with varying composition and templating phase, is synthesized in the laboratory and investigated in parallel using atomistic molecular dynamics simulations. The anisotropic nature of both the mono- and bifunctional acrylates used in this study enables a large tunability in the compositional range while still retaining liquid crystalline properties in the final elastomer. The use of simulations allows important evaluation and comparison of physical properties such as glass transition temperature, nematic to isotropic phase transition temperature, and order parameter. The dependence of physical properties (glass transition, nematic to isotropic transition, order parameter, coefficient of thermal expansion, and mechanical properties) is established as a function of chemical composition, showing a high degree of tunability. Interestingly, the templating phase (nematic or isotropic) is also shown to impact the subsequent elastomer properties, with excellent agreement shown here between experiments and simulations. The in silico approach to polymerization, coupled with excellent comparison with the experimental system, represents a new methodology for the targeted design of liquid crystal elastomers with specific physical properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.2c00587</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6227-6550</orcidid><orcidid>https://orcid.org/0000-0002-7494-2100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2022-06, Vol.55 (11), p.4320-4330
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_acs_macromol_2c00587
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Toward In Silico Design of Highly Tunable Liquid Crystal Elastomers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20In%20Silico%20Design%20of%20Highly%20Tunable%20Liquid%20Crystal%20Elastomers&rft.jtitle=Macromolecules&rft.au=Jull,%20Ethan%20I.%20L.&rft.date=2022-06-14&rft.volume=55&rft.issue=11&rft.spage=4320&rft.epage=4330&rft.pages=4320-4330&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.2c00587&rft_dat=%3Cacs_cross%3Ea666192775%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2537-1f024d3df1f4afb240dab4c77fe5cee67d73bbf84f4730a01b5b990ac469ed6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true