Loading…

Controlled or High-Speed Group Transfer Polymerization by Silyl Ketene Acetals without Catalyst

Group transfer polymerization (GTP) is an important ambient-temperature living polymerization method using silyl ketene acetal (SKA) or related initiators. Although several different GTP systems have been developed for polymerizing acrylic monomers, they all require the use of a catalyst to activate...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2016-11, Vol.49 (21), p.8075-8087
Main Authors: Chen, Jiawei, Gowda, Ravikumar R, He, Jianghua, Zhang, Yuetao, Chen, Eugene Y.-X
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a292t-35cc10a400d701a8187e7676efe54d9ff80be73533184c5f1a2022f3f09c74a03
cites cdi_FETCH-LOGICAL-a292t-35cc10a400d701a8187e7676efe54d9ff80be73533184c5f1a2022f3f09c74a03
container_end_page 8087
container_issue 21
container_start_page 8075
container_title Macromolecules
container_volume 49
creator Chen, Jiawei
Gowda, Ravikumar R
He, Jianghua
Zhang, Yuetao
Chen, Eugene Y.-X
description Group transfer polymerization (GTP) is an important ambient-temperature living polymerization method using silyl ketene acetal (SKA) or related initiators. Although several different GTP systems have been developed for polymerizing acrylic monomers, they all require the use of a catalyst to activate the SKA initiator, commonly believed to be ineffective on its own. Now, this work shows that, in fact, the neutral SKA alone mediates either controlled or extremely rapid polymerization of acrylic monomers such as methyl methacrylate (MMA) in polar donor solvents such as DMF, depending on the nuclearity of the SKA and the chelating pendant group on Si. In the case of a mono-SKA such as Me2CC­(OMe)­OSiMe3, the GTP of MMA in DMF is relatively slow (several hours to completion) but is controlled and remarkably efficient, producing PMMA with M n values close to those predicted on the basis of the [M]/[I] ratio, low Đ values (≤1.2), and high initiation efficiencies (≥80%). In sharp contrast, the di-SKAs linked by an oxo, ferrocenyl, or binaphthyl bridge, as well as the mono-SKA with a donor chelating methoxy pendant group on Si, mediate extremely rapid polymerization (a few seconds to completion), affording an extremely high turnover frequency up to 1.92 × 105 h–1, but the polymerization is uncontrolled. Several lines of evidence obtained through mechanistic studies indicate that the polymerization by the mono-SKA and di-SKA in DMF proceeds through a dissociative pathway with the released enolate anion being the highly active species and the polymerization characteristics are highly dependent on the amount of free enolate anions in solution. In this mechanism, the donor ability of the solvent plays a critical role in promoting the activity through activation of the Si site of the neutral SKA by forming the pentacoordinate Si intermediate.
doi_str_mv 10.1021/acs.macromol.6b01654
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_6b01654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e61099337</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-35cc10a400d701a8187e7676efe54d9ff80be73533184c5f1a2022f3f09c74a03</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKf_wIv8gc6Tr6a9HEU3caCweV3SLnEdaTOSDKm_3ozNW68O73l5DocHoUcCMwKUPKk2zHrVetc7O8sbILngV2hCBIVMFExcowkA5VlJS3mL7kLYAxAiOJugunJD9M5avcXO42X3tcvWB53SwrvjAW-8GoLRHn84O_badz8qdm7AzYjXnR0tftNRDxrPWx2VDfi7izt3jLhSKY4h3qMbk_b64TKn6PPleVMts9X74rWarzJFSxozJtqWgOIAWwlEFaSQWuYy10YLvi2NKaDRkgnGSMFbYYiiQKlhBspWcgVsivj5brIQgtemPviuV36sCdQnSXWSVP9Jqi-SEgZn7NTu3dEP6cn_kV-uiG_D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled or High-Speed Group Transfer Polymerization by Silyl Ketene Acetals without Catalyst</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Chen, Jiawei ; Gowda, Ravikumar R ; He, Jianghua ; Zhang, Yuetao ; Chen, Eugene Y.-X</creator><creatorcontrib>Chen, Jiawei ; Gowda, Ravikumar R ; He, Jianghua ; Zhang, Yuetao ; Chen, Eugene Y.-X</creatorcontrib><description>Group transfer polymerization (GTP) is an important ambient-temperature living polymerization method using silyl ketene acetal (SKA) or related initiators. Although several different GTP systems have been developed for polymerizing acrylic monomers, they all require the use of a catalyst to activate the SKA initiator, commonly believed to be ineffective on its own. Now, this work shows that, in fact, the neutral SKA alone mediates either controlled or extremely rapid polymerization of acrylic monomers such as methyl methacrylate (MMA) in polar donor solvents such as DMF, depending on the nuclearity of the SKA and the chelating pendant group on Si. In the case of a mono-SKA such as Me2CC­(OMe)­OSiMe3, the GTP of MMA in DMF is relatively slow (several hours to completion) but is controlled and remarkably efficient, producing PMMA with M n values close to those predicted on the basis of the [M]/[I] ratio, low Đ values (≤1.2), and high initiation efficiencies (≥80%). In sharp contrast, the di-SKAs linked by an oxo, ferrocenyl, or binaphthyl bridge, as well as the mono-SKA with a donor chelating methoxy pendant group on Si, mediate extremely rapid polymerization (a few seconds to completion), affording an extremely high turnover frequency up to 1.92 × 105 h–1, but the polymerization is uncontrolled. Several lines of evidence obtained through mechanistic studies indicate that the polymerization by the mono-SKA and di-SKA in DMF proceeds through a dissociative pathway with the released enolate anion being the highly active species and the polymerization characteristics are highly dependent on the amount of free enolate anions in solution. In this mechanism, the donor ability of the solvent plays a critical role in promoting the activity through activation of the Si site of the neutral SKA by forming the pentacoordinate Si intermediate.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.6b01654</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2016-11, Vol.49 (21), p.8075-8087</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-35cc10a400d701a8187e7676efe54d9ff80be73533184c5f1a2022f3f09c74a03</citedby><cites>FETCH-LOGICAL-a292t-35cc10a400d701a8187e7676efe54d9ff80be73533184c5f1a2022f3f09c74a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Gowda, Ravikumar R</creatorcontrib><creatorcontrib>He, Jianghua</creatorcontrib><creatorcontrib>Zhang, Yuetao</creatorcontrib><creatorcontrib>Chen, Eugene Y.-X</creatorcontrib><title>Controlled or High-Speed Group Transfer Polymerization by Silyl Ketene Acetals without Catalyst</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Group transfer polymerization (GTP) is an important ambient-temperature living polymerization method using silyl ketene acetal (SKA) or related initiators. Although several different GTP systems have been developed for polymerizing acrylic monomers, they all require the use of a catalyst to activate the SKA initiator, commonly believed to be ineffective on its own. Now, this work shows that, in fact, the neutral SKA alone mediates either controlled or extremely rapid polymerization of acrylic monomers such as methyl methacrylate (MMA) in polar donor solvents such as DMF, depending on the nuclearity of the SKA and the chelating pendant group on Si. In the case of a mono-SKA such as Me2CC­(OMe)­OSiMe3, the GTP of MMA in DMF is relatively slow (several hours to completion) but is controlled and remarkably efficient, producing PMMA with M n values close to those predicted on the basis of the [M]/[I] ratio, low Đ values (≤1.2), and high initiation efficiencies (≥80%). In sharp contrast, the di-SKAs linked by an oxo, ferrocenyl, or binaphthyl bridge, as well as the mono-SKA with a donor chelating methoxy pendant group on Si, mediate extremely rapid polymerization (a few seconds to completion), affording an extremely high turnover frequency up to 1.92 × 105 h–1, but the polymerization is uncontrolled. Several lines of evidence obtained through mechanistic studies indicate that the polymerization by the mono-SKA and di-SKA in DMF proceeds through a dissociative pathway with the released enolate anion being the highly active species and the polymerization characteristics are highly dependent on the amount of free enolate anions in solution. In this mechanism, the donor ability of the solvent plays a critical role in promoting the activity through activation of the Si site of the neutral SKA by forming the pentacoordinate Si intermediate.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKf_wIv8gc6Tr6a9HEU3caCweV3SLnEdaTOSDKm_3ozNW68O73l5DocHoUcCMwKUPKk2zHrVetc7O8sbILngV2hCBIVMFExcowkA5VlJS3mL7kLYAxAiOJugunJD9M5avcXO42X3tcvWB53SwrvjAW-8GoLRHn84O_badz8qdm7AzYjXnR0tftNRDxrPWx2VDfi7izt3jLhSKY4h3qMbk_b64TKn6PPleVMts9X74rWarzJFSxozJtqWgOIAWwlEFaSQWuYy10YLvi2NKaDRkgnGSMFbYYiiQKlhBspWcgVsivj5brIQgtemPviuV36sCdQnSXWSVP9Jqi-SEgZn7NTu3dEP6cn_kV-uiG_D</recordid><startdate>20161108</startdate><enddate>20161108</enddate><creator>Chen, Jiawei</creator><creator>Gowda, Ravikumar R</creator><creator>He, Jianghua</creator><creator>Zhang, Yuetao</creator><creator>Chen, Eugene Y.-X</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161108</creationdate><title>Controlled or High-Speed Group Transfer Polymerization by Silyl Ketene Acetals without Catalyst</title><author>Chen, Jiawei ; Gowda, Ravikumar R ; He, Jianghua ; Zhang, Yuetao ; Chen, Eugene Y.-X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-35cc10a400d701a8187e7676efe54d9ff80be73533184c5f1a2022f3f09c74a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Gowda, Ravikumar R</creatorcontrib><creatorcontrib>He, Jianghua</creatorcontrib><creatorcontrib>Zhang, Yuetao</creatorcontrib><creatorcontrib>Chen, Eugene Y.-X</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiawei</au><au>Gowda, Ravikumar R</au><au>He, Jianghua</au><au>Zhang, Yuetao</au><au>Chen, Eugene Y.-X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled or High-Speed Group Transfer Polymerization by Silyl Ketene Acetals without Catalyst</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2016-11-08</date><risdate>2016</risdate><volume>49</volume><issue>21</issue><spage>8075</spage><epage>8087</epage><pages>8075-8087</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>Group transfer polymerization (GTP) is an important ambient-temperature living polymerization method using silyl ketene acetal (SKA) or related initiators. Although several different GTP systems have been developed for polymerizing acrylic monomers, they all require the use of a catalyst to activate the SKA initiator, commonly believed to be ineffective on its own. Now, this work shows that, in fact, the neutral SKA alone mediates either controlled or extremely rapid polymerization of acrylic monomers such as methyl methacrylate (MMA) in polar donor solvents such as DMF, depending on the nuclearity of the SKA and the chelating pendant group on Si. In the case of a mono-SKA such as Me2CC­(OMe)­OSiMe3, the GTP of MMA in DMF is relatively slow (several hours to completion) but is controlled and remarkably efficient, producing PMMA with M n values close to those predicted on the basis of the [M]/[I] ratio, low Đ values (≤1.2), and high initiation efficiencies (≥80%). In sharp contrast, the di-SKAs linked by an oxo, ferrocenyl, or binaphthyl bridge, as well as the mono-SKA with a donor chelating methoxy pendant group on Si, mediate extremely rapid polymerization (a few seconds to completion), affording an extremely high turnover frequency up to 1.92 × 105 h–1, but the polymerization is uncontrolled. Several lines of evidence obtained through mechanistic studies indicate that the polymerization by the mono-SKA and di-SKA in DMF proceeds through a dissociative pathway with the released enolate anion being the highly active species and the polymerization characteristics are highly dependent on the amount of free enolate anions in solution. In this mechanism, the donor ability of the solvent plays a critical role in promoting the activity through activation of the Si site of the neutral SKA by forming the pentacoordinate Si intermediate.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.6b01654</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2016-11, Vol.49 (21), p.8075-8087
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_acs_macromol_6b01654
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Controlled or High-Speed Group Transfer Polymerization by Silyl Ketene Acetals without Catalyst
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20or%20High-Speed%20Group%20Transfer%20Polymerization%20by%20Silyl%20Ketene%20Acetals%20without%20Catalyst&rft.jtitle=Macromolecules&rft.au=Chen,%20Jiawei&rft.date=2016-11-08&rft.volume=49&rft.issue=21&rft.spage=8075&rft.epage=8087&rft.pages=8075-8087&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.6b01654&rft_dat=%3Cacs_cross%3Ee61099337%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-35cc10a400d701a8187e7676efe54d9ff80be73533184c5f1a2022f3f09c74a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true