Loading…
End-Capping Strategies for Triggering End-to-End Depolymerization of Polyglyoxylates
Polymers that undergo end-to-end depolymerization in response to the cleavage of a stimuli-responsive end-cap are promising for diverse applications from drug delivery to responsive coatings and plastics. It is critical that the end-cap is designed to respond to an appropriate stimulus for the appli...
Saved in:
Published in: | Macromolecules 2016-12, Vol.49 (24), p.9309-9319 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymers that undergo end-to-end depolymerization in response to the cleavage of a stimuli-responsive end-cap are promising for diverse applications from drug delivery to responsive coatings and plastics. It is critical that the end-cap is designed to respond to an appropriate stimulus for the application. In the current work, end-caps for triggering the depolymerization of poly(ethyl glyoxylate) (PEtG) were explored. First, a phenylboronate, a disulfide, and an azobenzene were utilized to impart redox-responsive properties to PEtG. Then, methoxy-substituted trityl groups were used to provide sensitivity to mild acid. A multiresponsive platform was also introduced, allowing PEtG to respond to multiple stimuli, either simultaneously or independently. Incorporation of a cross-linkable trialkene end-cap enabled the preparation of networks that could subsequently be depolymerized. Finally, high molar mass PEtG could be depolymerized by mechanical stimulation independent of the end-cap. It is anticipated that the versatility in end-capping strategies and potential depolymerization stimuli will not only expand PEtG’s utility for different applications but also be useful for other classes of end-to-end depolymerizable polymers. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.6b02320 |