Loading…
Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes
Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semic...
Saved in:
Published in: | Macromolecules 2017-05, Vol.50 (9), p.3598-3606 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623 |
---|---|
cites | cdi_FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623 |
container_end_page | 3606 |
container_issue | 9 |
container_start_page | 3598 |
container_title | Macromolecules |
container_volume | 50 |
creator | Schimpf, Vitalij Heck, Barbara Reiter, Günter Mülhaupt, Rolf |
description | Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semicrystalline polyamidoamine curing agents tailored by amidation of a polyamine-terminated hyperbranched polyethylenimine with semicrystalline long chain behenic acid. Both cure temperature and content of n-alkyl side chains, varied independently, govern crystallization behavior, phase separation and mechanical properties of semicrystalline PHU networks obtained by curing pentaerythritol-based polyfunctional cyclic carbonates with hyperbranched, semicrystalline polyamidoamines. As compared to conventional PHUs, the incorporation of hydrophobic, crystalline n-alkyl side chains significantly lowers hydrophilicity. Typically, the n-alkyl side chains of behenic amides in PHU networks melt at temperatures varying between 40 and 75 °C. According to analyses by means of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) crystallization of the behenic amide side chains accounts for nanophase separation producing nanocrystalline PHUs with programmable shapes. Hence, controlled PHU crystallization and PHU nanostructure formation afford thermomechanical programming of PHU triple-shape memory materials memorizing two different shapes in addition to the original shape within a single shape memory cycle. Opposite to conventional polyurethanes, triple-shape memory PHUs require neither the use of isocyanates nor phosgene. |
doi_str_mv | 10.1021/acs.macromol.7b00500 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_7b00500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c846870602</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhz8Aim2E9fJESp-KrUFiXKONs5GcZXEkZ1W5O3rquXKaaVZzWjmI-SRsxlngj-B9rMWtLOtbWaqYEwydkUmXAoWyTSW12TCmEiiTGTqltx5v2OMc5nEE-K2zvQNRt819EjX2Fo30jUM6Aw0nh4M0G2NLsjoe9t5c0D6gjUcjHXUVnQDndVu9AM0jemQbmwXLb3VI3QhhH7ZZqzH0tnfce9wqKFDf09uqpCND5c7JT9vr9vFR7T6fF8unlcRiEwMUQplqucqEzoBWZRVAqC1RJ6qWGipSpbwoCc6DFMwh6qSqlAYNotYFDgX8ZQk59wAxnuHVd4704Ibc87yE7c8cMv_uOUXbsHGzrbTd2f3rgsl_7ccAWBYeRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Schimpf, Vitalij ; Heck, Barbara ; Reiter, Günter ; Mülhaupt, Rolf</creator><creatorcontrib>Schimpf, Vitalij ; Heck, Barbara ; Reiter, Günter ; Mülhaupt, Rolf</creatorcontrib><description>Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semicrystalline polyamidoamine curing agents tailored by amidation of a polyamine-terminated hyperbranched polyethylenimine with semicrystalline long chain behenic acid. Both cure temperature and content of n-alkyl side chains, varied independently, govern crystallization behavior, phase separation and mechanical properties of semicrystalline PHU networks obtained by curing pentaerythritol-based polyfunctional cyclic carbonates with hyperbranched, semicrystalline polyamidoamines. As compared to conventional PHUs, the incorporation of hydrophobic, crystalline n-alkyl side chains significantly lowers hydrophilicity. Typically, the n-alkyl side chains of behenic amides in PHU networks melt at temperatures varying between 40 and 75 °C. According to analyses by means of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) crystallization of the behenic amide side chains accounts for nanophase separation producing nanocrystalline PHUs with programmable shapes. Hence, controlled PHU crystallization and PHU nanostructure formation afford thermomechanical programming of PHU triple-shape memory materials memorizing two different shapes in addition to the original shape within a single shape memory cycle. Opposite to conventional polyurethanes, triple-shape memory PHUs require neither the use of isocyanates nor phosgene.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.7b00500</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2017-05, Vol.50 (9), p.3598-3606</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623</citedby><cites>FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623</cites><orcidid>0000-0002-9232-0479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schimpf, Vitalij</creatorcontrib><creatorcontrib>Heck, Barbara</creatorcontrib><creatorcontrib>Reiter, Günter</creatorcontrib><creatorcontrib>Mülhaupt, Rolf</creatorcontrib><title>Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semicrystalline polyamidoamine curing agents tailored by amidation of a polyamine-terminated hyperbranched polyethylenimine with semicrystalline long chain behenic acid. Both cure temperature and content of n-alkyl side chains, varied independently, govern crystallization behavior, phase separation and mechanical properties of semicrystalline PHU networks obtained by curing pentaerythritol-based polyfunctional cyclic carbonates with hyperbranched, semicrystalline polyamidoamines. As compared to conventional PHUs, the incorporation of hydrophobic, crystalline n-alkyl side chains significantly lowers hydrophilicity. Typically, the n-alkyl side chains of behenic amides in PHU networks melt at temperatures varying between 40 and 75 °C. According to analyses by means of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) crystallization of the behenic amide side chains accounts for nanophase separation producing nanocrystalline PHUs with programmable shapes. Hence, controlled PHU crystallization and PHU nanostructure formation afford thermomechanical programming of PHU triple-shape memory materials memorizing two different shapes in addition to the original shape within a single shape memory cycle. Opposite to conventional polyurethanes, triple-shape memory PHUs require neither the use of isocyanates nor phosgene.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhz8Aim2E9fJESp-KrUFiXKONs5GcZXEkZ1W5O3rquXKaaVZzWjmI-SRsxlngj-B9rMWtLOtbWaqYEwydkUmXAoWyTSW12TCmEiiTGTqltx5v2OMc5nEE-K2zvQNRt819EjX2Fo30jUM6Aw0nh4M0G2NLsjoe9t5c0D6gjUcjHXUVnQDndVu9AM0jemQbmwXLb3VI3QhhH7ZZqzH0tnfce9wqKFDf09uqpCND5c7JT9vr9vFR7T6fF8unlcRiEwMUQplqucqEzoBWZRVAqC1RJ6qWGipSpbwoCc6DFMwh6qSqlAYNotYFDgX8ZQk59wAxnuHVd4704Ibc87yE7c8cMv_uOUXbsHGzrbTd2f3rgsl_7ccAWBYeRA</recordid><startdate>20170509</startdate><enddate>20170509</enddate><creator>Schimpf, Vitalij</creator><creator>Heck, Barbara</creator><creator>Reiter, Günter</creator><creator>Mülhaupt, Rolf</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9232-0479</orcidid></search><sort><creationdate>20170509</creationdate><title>Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes</title><author>Schimpf, Vitalij ; Heck, Barbara ; Reiter, Günter ; Mülhaupt, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schimpf, Vitalij</creatorcontrib><creatorcontrib>Heck, Barbara</creatorcontrib><creatorcontrib>Reiter, Günter</creatorcontrib><creatorcontrib>Mülhaupt, Rolf</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schimpf, Vitalij</au><au>Heck, Barbara</au><au>Reiter, Günter</au><au>Mülhaupt, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2017-05-09</date><risdate>2017</risdate><volume>50</volume><issue>9</issue><spage>3598</spage><epage>3606</epage><pages>3598-3606</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semicrystalline polyamidoamine curing agents tailored by amidation of a polyamine-terminated hyperbranched polyethylenimine with semicrystalline long chain behenic acid. Both cure temperature and content of n-alkyl side chains, varied independently, govern crystallization behavior, phase separation and mechanical properties of semicrystalline PHU networks obtained by curing pentaerythritol-based polyfunctional cyclic carbonates with hyperbranched, semicrystalline polyamidoamines. As compared to conventional PHUs, the incorporation of hydrophobic, crystalline n-alkyl side chains significantly lowers hydrophilicity. Typically, the n-alkyl side chains of behenic amides in PHU networks melt at temperatures varying between 40 and 75 °C. According to analyses by means of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) crystallization of the behenic amide side chains accounts for nanophase separation producing nanocrystalline PHUs with programmable shapes. Hence, controlled PHU crystallization and PHU nanostructure formation afford thermomechanical programming of PHU triple-shape memory materials memorizing two different shapes in addition to the original shape within a single shape memory cycle. Opposite to conventional polyurethanes, triple-shape memory PHUs require neither the use of isocyanates nor phosgene.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.7b00500</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9232-0479</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-9297 |
ispartof | Macromolecules, 2017-05, Vol.50 (9), p.3598-3606 |
issn | 0024-9297 1520-5835 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_macromol_7b00500 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triple-Shape%20Memory%20Materials%20via%20Thermoresponsive%20Behavior%20of%20Nanocrystalline%20Non-Isocyanate%20Polyhydroxyurethanes&rft.jtitle=Macromolecules&rft.au=Schimpf,%20Vitalij&rft.date=2017-05-09&rft.volume=50&rft.issue=9&rft.spage=3598&rft.epage=3606&rft.pages=3598-3606&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.7b00500&rft_dat=%3Cacs_cross%3Ec846870602%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |