Loading…

Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes

Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semic...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2017-05, Vol.50 (9), p.3598-3606
Main Authors: Schimpf, Vitalij, Heck, Barbara, Reiter, Günter, Mülhaupt, Rolf
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623
cites cdi_FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623
container_end_page 3606
container_issue 9
container_start_page 3598
container_title Macromolecules
container_volume 50
creator Schimpf, Vitalij
Heck, Barbara
Reiter, Günter
Mülhaupt, Rolf
description Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semicrystalline polyamidoamine curing agents tailored by amidation of a polyamine-terminated hyperbranched polyethylenimine with semicrystalline long chain behenic acid. Both cure temperature and content of n-alkyl side chains, varied independently, govern crystallization behavior, phase separation and mechanical properties of semicrystalline PHU networks obtained by curing pentaerythritol-based polyfunctional cyclic carbonates with hyperbranched, semicrystalline polyamidoamines. As compared to conventional PHUs, the incorporation of hydrophobic, crystalline n-alkyl side chains significantly lowers hydrophilicity. Typically, the n-alkyl side chains of behenic amides in PHU networks melt at temperatures varying between 40 and 75 °C. According to analyses by means of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) crystallization of the behenic amide side chains accounts for nanophase separation producing nanocrystalline PHUs with programmable shapes. Hence, controlled PHU crystallization and PHU nanostructure formation afford thermomechanical programming of PHU triple-shape memory materials memorizing two different shapes in addition to the original shape within a single shape memory cycle. Opposite to conventional polyurethanes, triple-shape memory PHUs require neither the use of isocyanates nor phosgene.
doi_str_mv 10.1021/acs.macromol.7b00500
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_7b00500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c846870602</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhz8Aim2E9fJESp-KrUFiXKONs5GcZXEkZ1W5O3rquXKaaVZzWjmI-SRsxlngj-B9rMWtLOtbWaqYEwydkUmXAoWyTSW12TCmEiiTGTqltx5v2OMc5nEE-K2zvQNRt819EjX2Fo30jUM6Aw0nh4M0G2NLsjoe9t5c0D6gjUcjHXUVnQDndVu9AM0jemQbmwXLb3VI3QhhH7ZZqzH0tnfce9wqKFDf09uqpCND5c7JT9vr9vFR7T6fF8unlcRiEwMUQplqucqEzoBWZRVAqC1RJ6qWGipSpbwoCc6DFMwh6qSqlAYNotYFDgX8ZQk59wAxnuHVd4704Ibc87yE7c8cMv_uOUXbsHGzrbTd2f3rgsl_7ccAWBYeRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Schimpf, Vitalij ; Heck, Barbara ; Reiter, Günter ; Mülhaupt, Rolf</creator><creatorcontrib>Schimpf, Vitalij ; Heck, Barbara ; Reiter, Günter ; Mülhaupt, Rolf</creatorcontrib><description>Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semicrystalline polyamidoamine curing agents tailored by amidation of a polyamine-terminated hyperbranched polyethylenimine with semicrystalline long chain behenic acid. Both cure temperature and content of n-alkyl side chains, varied independently, govern crystallization behavior, phase separation and mechanical properties of semicrystalline PHU networks obtained by curing pentaerythritol-based polyfunctional cyclic carbonates with hyperbranched, semicrystalline polyamidoamines. As compared to conventional PHUs, the incorporation of hydrophobic, crystalline n-alkyl side chains significantly lowers hydrophilicity. Typically, the n-alkyl side chains of behenic amides in PHU networks melt at temperatures varying between 40 and 75 °C. According to analyses by means of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) crystallization of the behenic amide side chains accounts for nanophase separation producing nanocrystalline PHUs with programmable shapes. Hence, controlled PHU crystallization and PHU nanostructure formation afford thermomechanical programming of PHU triple-shape memory materials memorizing two different shapes in addition to the original shape within a single shape memory cycle. Opposite to conventional polyurethanes, triple-shape memory PHUs require neither the use of isocyanates nor phosgene.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.7b00500</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2017-05, Vol.50 (9), p.3598-3606</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623</citedby><cites>FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623</cites><orcidid>0000-0002-9232-0479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schimpf, Vitalij</creatorcontrib><creatorcontrib>Heck, Barbara</creatorcontrib><creatorcontrib>Reiter, Günter</creatorcontrib><creatorcontrib>Mülhaupt, Rolf</creatorcontrib><title>Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semicrystalline polyamidoamine curing agents tailored by amidation of a polyamine-terminated hyperbranched polyethylenimine with semicrystalline long chain behenic acid. Both cure temperature and content of n-alkyl side chains, varied independently, govern crystallization behavior, phase separation and mechanical properties of semicrystalline PHU networks obtained by curing pentaerythritol-based polyfunctional cyclic carbonates with hyperbranched, semicrystalline polyamidoamines. As compared to conventional PHUs, the incorporation of hydrophobic, crystalline n-alkyl side chains significantly lowers hydrophilicity. Typically, the n-alkyl side chains of behenic amides in PHU networks melt at temperatures varying between 40 and 75 °C. According to analyses by means of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) crystallization of the behenic amide side chains accounts for nanophase separation producing nanocrystalline PHUs with programmable shapes. Hence, controlled PHU crystallization and PHU nanostructure formation afford thermomechanical programming of PHU triple-shape memory materials memorizing two different shapes in addition to the original shape within a single shape memory cycle. Opposite to conventional polyurethanes, triple-shape memory PHUs require neither the use of isocyanates nor phosgene.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhz8Aim2E9fJESp-KrUFiXKONs5GcZXEkZ1W5O3rquXKaaVZzWjmI-SRsxlngj-B9rMWtLOtbWaqYEwydkUmXAoWyTSW12TCmEiiTGTqltx5v2OMc5nEE-K2zvQNRt819EjX2Fo30jUM6Aw0nh4M0G2NLsjoe9t5c0D6gjUcjHXUVnQDndVu9AM0jemQbmwXLb3VI3QhhH7ZZqzH0tnfce9wqKFDf09uqpCND5c7JT9vr9vFR7T6fF8unlcRiEwMUQplqucqEzoBWZRVAqC1RJ6qWGipSpbwoCc6DFMwh6qSqlAYNotYFDgX8ZQk59wAxnuHVd4704Ibc87yE7c8cMv_uOUXbsHGzrbTd2f3rgsl_7ccAWBYeRA</recordid><startdate>20170509</startdate><enddate>20170509</enddate><creator>Schimpf, Vitalij</creator><creator>Heck, Barbara</creator><creator>Reiter, Günter</creator><creator>Mülhaupt, Rolf</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9232-0479</orcidid></search><sort><creationdate>20170509</creationdate><title>Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes</title><author>Schimpf, Vitalij ; Heck, Barbara ; Reiter, Günter ; Mülhaupt, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schimpf, Vitalij</creatorcontrib><creatorcontrib>Heck, Barbara</creatorcontrib><creatorcontrib>Reiter, Günter</creatorcontrib><creatorcontrib>Mülhaupt, Rolf</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schimpf, Vitalij</au><au>Heck, Barbara</au><au>Reiter, Günter</au><au>Mülhaupt, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2017-05-09</date><risdate>2017</risdate><volume>50</volume><issue>9</issue><spage>3598</spage><epage>3606</epage><pages>3598-3606</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>Crystallization of long n-alkyl side chains within the confined environment of nonisocyanate polyhydroxyurethane (PHU) networks renders PHUs thermoresponsive, enabling thermomechanical programming of temperature-induced shape changes. Key intermediates of shape memory PHUs are highly branched, semicrystalline polyamidoamine curing agents tailored by amidation of a polyamine-terminated hyperbranched polyethylenimine with semicrystalline long chain behenic acid. Both cure temperature and content of n-alkyl side chains, varied independently, govern crystallization behavior, phase separation and mechanical properties of semicrystalline PHU networks obtained by curing pentaerythritol-based polyfunctional cyclic carbonates with hyperbranched, semicrystalline polyamidoamines. As compared to conventional PHUs, the incorporation of hydrophobic, crystalline n-alkyl side chains significantly lowers hydrophilicity. Typically, the n-alkyl side chains of behenic amides in PHU networks melt at temperatures varying between 40 and 75 °C. According to analyses by means of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) crystallization of the behenic amide side chains accounts for nanophase separation producing nanocrystalline PHUs with programmable shapes. Hence, controlled PHU crystallization and PHU nanostructure formation afford thermomechanical programming of PHU triple-shape memory materials memorizing two different shapes in addition to the original shape within a single shape memory cycle. Opposite to conventional polyurethanes, triple-shape memory PHUs require neither the use of isocyanates nor phosgene.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.7b00500</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9232-0479</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2017-05, Vol.50 (9), p.3598-3606
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_acs_macromol_7b00500
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triple-Shape%20Memory%20Materials%20via%20Thermoresponsive%20Behavior%20of%20Nanocrystalline%20Non-Isocyanate%20Polyhydroxyurethanes&rft.jtitle=Macromolecules&rft.au=Schimpf,%20Vitalij&rft.date=2017-05-09&rft.volume=50&rft.issue=9&rft.spage=3598&rft.epage=3606&rft.pages=3598-3606&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.7b00500&rft_dat=%3Cacs_cross%3Ec846870602%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-8ad8c6792c4a5bdf4aacc5e18732c57d041a5b4c0247a6aff57b7e152232be623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true