Loading…
Semiaromatic Polyesters Derived from Renewable Terpene Oxides with High Glass Transitions
The formation of bio-derived materials is gaining momentum in academic and industrial laboratories, though the use of terpene oxides as renewable monomers for the preparation of bio-based polymers yet remains limited. In order to advance the impact of such monomers, we have investigated the use of t...
Saved in:
Published in: | Macromolecules 2017-07, Vol.50 (14), p.5337-5345 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation of bio-derived materials is gaining momentum in academic and industrial laboratories, though the use of terpene oxides as renewable monomers for the preparation of bio-based polymers yet remains limited. In order to advance the impact of such monomers, we have investigated the use of terpene-derived epoxides (limonene oxide, carene oxide, limonene dioxide, and menthene oxide) for the ring-opening copolymerization (ROCOP) in the presence of various aromatic anhydrides. These copolymerization reactions were mostly performed under mild reaction conditions (65 °C; low loading of catalyst: 0.50 mol %) using a binary catalyst composed of a Fe(III)-based aminotriphenolate complex and PPNCl (bis(triphenylphosphine)iminium chloride) providing partially bio-based semiaromatic polyesters with molecular weights of up to 25 kg/mol (Đ = 1.54) and glass transitions spanning a wide range from 59 to 243 °C. The copolymerization reactions proceed with excellent selectivity toward fully alternating polyesters (≥98% ester bonds) with modular thermal properties that depend on the nature of the terpene oxide used and are potentially useful toward the development of new coating and thermoset materials. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.7b00862 |