Loading…

Unfolding of a Single Polymer Chain from the Single Crystal by Air-Phase Single-Molecule Force Spectroscopy: Toward Better Force Precision and More Accurate Description of Molecular Behaviors

Understanding the mechanisms of the mechanical deformation of lamellar crystals at the molecular level is of prime importance to rational design of advanced crystalline polymer materials. Single-molecule force spectroscopy (SMFS) can directly characterize molecular behavior and kinetic parameters th...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2018-09, Vol.51 (18), p.7052-7060
Main Authors: Yang, Peng, Song, Yu, Feng, Wei, Zhang, Wenke
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a395t-9134c98052c11dccdcd4e7d48c09a2203fea2598dc9a37cb4155d64a912de9723
cites cdi_FETCH-LOGICAL-a395t-9134c98052c11dccdcd4e7d48c09a2203fea2598dc9a37cb4155d64a912de9723
container_end_page 7060
container_issue 18
container_start_page 7052
container_title Macromolecules
container_volume 51
creator Yang, Peng
Song, Yu
Feng, Wei
Zhang, Wenke
description Understanding the mechanisms of the mechanical deformation of lamellar crystals at the molecular level is of prime importance to rational design of advanced crystalline polymer materials. Single-molecule force spectroscopy (SMFS) can directly characterize molecular behavior and kinetic parameters that are masked in ensemble measurements. However, current SMFS approach cannot sufficiently manipulate a single molecule in air, which is the real working condition for most crystalline polymer materials. Here, we establish an air-phase atomic force microscopy (AFM)-based SMFS method that allows the unfolding of a single helical poly­(ethylene oxide) (PEO) chain from the single crystal in air. Our results show that the mechanostability of PEO stem and unfolding potential are significantly enhanced in air compared with the case in liquid. The air-phase SMFS method can achieve a much better force precision of 4 pN even at rapid stretching velocity of ∼100 μm/s. Moreover, some intermediate states (e.g., the movement of helical loop within the crystal phase), which were not detectable by using liquid-phase SMFS, have been identified by air-phase SMFS. Therefore, this proposed approach opens new ways for investigating the nanomechanical properties and corresponding molecular mechanism of polymer materials used in solvent-free state.
doi_str_mv 10.1021/acs.macromol.8b01544
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_macromol_8b01544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a169970416</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-9134c98052c11dccdcd4e7d48c09a2203fea2598dc9a37cb4155d64a912de9723</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhS0EEuXnBix8gRTbsWnMrpRfCUQl2nU0HTs0KI2rcQrK6bgartpuWY01771PIz_GrqQYSqHkNWAcrgAprEIzLBZCGq2P2EAaJTJT5OaYDYRQOrPKjk7ZWYxfQshkygfsd95WoXF1-8lDxYF_pFfj-TQ0_coTnyyhbnmVyLxb-oM6oT520PBFz8c1ZdMlxIOWvYXG4yaZHgNh2q49dhQihnV_y2fhB8jxO991Cb5zTMljHevQcmgdfwvk-RhxQ9B5fu8jUr3utmo6b88GSoQlfNeB4gU7qaCJ_nI_z9n88WE2ec5e359eJuPXDHJruszKXKMthFEopUN06LQfOV2gsKCUyCsPytjCoYV8hAstjXE3GqxUztuRys-Z3nHTL8dIvirXVK-A-lKKcltCmUooDyWU-xJSTOxiW_UrbKhNR_4f-QNDpJKu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unfolding of a Single Polymer Chain from the Single Crystal by Air-Phase Single-Molecule Force Spectroscopy: Toward Better Force Precision and More Accurate Description of Molecular Behaviors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yang, Peng ; Song, Yu ; Feng, Wei ; Zhang, Wenke</creator><creatorcontrib>Yang, Peng ; Song, Yu ; Feng, Wei ; Zhang, Wenke</creatorcontrib><description>Understanding the mechanisms of the mechanical deformation of lamellar crystals at the molecular level is of prime importance to rational design of advanced crystalline polymer materials. Single-molecule force spectroscopy (SMFS) can directly characterize molecular behavior and kinetic parameters that are masked in ensemble measurements. However, current SMFS approach cannot sufficiently manipulate a single molecule in air, which is the real working condition for most crystalline polymer materials. Here, we establish an air-phase atomic force microscopy (AFM)-based SMFS method that allows the unfolding of a single helical poly­(ethylene oxide) (PEO) chain from the single crystal in air. Our results show that the mechanostability of PEO stem and unfolding potential are significantly enhanced in air compared with the case in liquid. The air-phase SMFS method can achieve a much better force precision of 4 pN even at rapid stretching velocity of ∼100 μm/s. Moreover, some intermediate states (e.g., the movement of helical loop within the crystal phase), which were not detectable by using liquid-phase SMFS, have been identified by air-phase SMFS. Therefore, this proposed approach opens new ways for investigating the nanomechanical properties and corresponding molecular mechanism of polymer materials used in solvent-free state.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/acs.macromol.8b01544</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Macromolecules, 2018-09, Vol.51 (18), p.7052-7060</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-9134c98052c11dccdcd4e7d48c09a2203fea2598dc9a37cb4155d64a912de9723</citedby><cites>FETCH-LOGICAL-a395t-9134c98052c11dccdcd4e7d48c09a2203fea2598dc9a37cb4155d64a912de9723</cites><orcidid>0000-0002-4569-6035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Zhang, Wenke</creatorcontrib><title>Unfolding of a Single Polymer Chain from the Single Crystal by Air-Phase Single-Molecule Force Spectroscopy: Toward Better Force Precision and More Accurate Description of Molecular Behaviors</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Understanding the mechanisms of the mechanical deformation of lamellar crystals at the molecular level is of prime importance to rational design of advanced crystalline polymer materials. Single-molecule force spectroscopy (SMFS) can directly characterize molecular behavior and kinetic parameters that are masked in ensemble measurements. However, current SMFS approach cannot sufficiently manipulate a single molecule in air, which is the real working condition for most crystalline polymer materials. Here, we establish an air-phase atomic force microscopy (AFM)-based SMFS method that allows the unfolding of a single helical poly­(ethylene oxide) (PEO) chain from the single crystal in air. Our results show that the mechanostability of PEO stem and unfolding potential are significantly enhanced in air compared with the case in liquid. The air-phase SMFS method can achieve a much better force precision of 4 pN even at rapid stretching velocity of ∼100 μm/s. Moreover, some intermediate states (e.g., the movement of helical loop within the crystal phase), which were not detectable by using liquid-phase SMFS, have been identified by air-phase SMFS. Therefore, this proposed approach opens new ways for investigating the nanomechanical properties and corresponding molecular mechanism of polymer materials used in solvent-free state.</description><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1OwzAQhS0EEuXnBix8gRTbsWnMrpRfCUQl2nU0HTs0KI2rcQrK6bgartpuWY01771PIz_GrqQYSqHkNWAcrgAprEIzLBZCGq2P2EAaJTJT5OaYDYRQOrPKjk7ZWYxfQshkygfsd95WoXF1-8lDxYF_pFfj-TQ0_coTnyyhbnmVyLxb-oM6oT520PBFz8c1ZdMlxIOWvYXG4yaZHgNh2q49dhQihnV_y2fhB8jxO991Cb5zTMljHevQcmgdfwvk-RhxQ9B5fu8jUr3utmo6b88GSoQlfNeB4gU7qaCJ_nI_z9n88WE2ec5e359eJuPXDHJruszKXKMthFEopUN06LQfOV2gsKCUyCsPytjCoYV8hAstjXE3GqxUztuRys-Z3nHTL8dIvirXVK-A-lKKcltCmUooDyWU-xJSTOxiW_UrbKhNR_4f-QNDpJKu</recordid><startdate>20180925</startdate><enddate>20180925</enddate><creator>Yang, Peng</creator><creator>Song, Yu</creator><creator>Feng, Wei</creator><creator>Zhang, Wenke</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4569-6035</orcidid></search><sort><creationdate>20180925</creationdate><title>Unfolding of a Single Polymer Chain from the Single Crystal by Air-Phase Single-Molecule Force Spectroscopy: Toward Better Force Precision and More Accurate Description of Molecular Behaviors</title><author>Yang, Peng ; Song, Yu ; Feng, Wei ; Zhang, Wenke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-9134c98052c11dccdcd4e7d48c09a2203fea2598dc9a37cb4155d64a912de9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Zhang, Wenke</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Peng</au><au>Song, Yu</au><au>Feng, Wei</au><au>Zhang, Wenke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unfolding of a Single Polymer Chain from the Single Crystal by Air-Phase Single-Molecule Force Spectroscopy: Toward Better Force Precision and More Accurate Description of Molecular Behaviors</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2018-09-25</date><risdate>2018</risdate><volume>51</volume><issue>18</issue><spage>7052</spage><epage>7060</epage><pages>7052-7060</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><abstract>Understanding the mechanisms of the mechanical deformation of lamellar crystals at the molecular level is of prime importance to rational design of advanced crystalline polymer materials. Single-molecule force spectroscopy (SMFS) can directly characterize molecular behavior and kinetic parameters that are masked in ensemble measurements. However, current SMFS approach cannot sufficiently manipulate a single molecule in air, which is the real working condition for most crystalline polymer materials. Here, we establish an air-phase atomic force microscopy (AFM)-based SMFS method that allows the unfolding of a single helical poly­(ethylene oxide) (PEO) chain from the single crystal in air. Our results show that the mechanostability of PEO stem and unfolding potential are significantly enhanced in air compared with the case in liquid. The air-phase SMFS method can achieve a much better force precision of 4 pN even at rapid stretching velocity of ∼100 μm/s. Moreover, some intermediate states (e.g., the movement of helical loop within the crystal phase), which were not detectable by using liquid-phase SMFS, have been identified by air-phase SMFS. Therefore, this proposed approach opens new ways for investigating the nanomechanical properties and corresponding molecular mechanism of polymer materials used in solvent-free state.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.macromol.8b01544</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4569-6035</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2018-09, Vol.51 (18), p.7052-7060
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_acs_macromol_8b01544
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Unfolding of a Single Polymer Chain from the Single Crystal by Air-Phase Single-Molecule Force Spectroscopy: Toward Better Force Precision and More Accurate Description of Molecular Behaviors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unfolding%20of%20a%20Single%20Polymer%20Chain%20from%20the%20Single%20Crystal%20by%20Air-Phase%20Single-Molecule%20Force%20Spectroscopy:%20Toward%20Better%20Force%20Precision%20and%20More%20Accurate%20Description%20of%20Molecular%20Behaviors&rft.jtitle=Macromolecules&rft.au=Yang,%20Peng&rft.date=2018-09-25&rft.volume=51&rft.issue=18&rft.spage=7052&rft.epage=7060&rft.pages=7052-7060&rft.issn=0024-9297&rft.eissn=1520-5835&rft_id=info:doi/10.1021/acs.macromol.8b01544&rft_dat=%3Cacs_cross%3Ea169970416%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a395t-9134c98052c11dccdcd4e7d48c09a2203fea2598dc9a37cb4155d64a912de9723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true