Loading…

Hierarchical Self-Assembly of Conjugated Block Copolymers and Semiconducting Nanorods into One-Dimensional Nanocomposites

Semiconducting organic–inorganic nanocomposites comprising conjugated polymers (CPs) and semiconducting nanocrystals (NCs) represent an important class of functional materials. The ability to organize CPs and NCs into self-assembled nanostructures in close proximity may enable efficient charge or en...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2018-11, Vol.51 (21), p.8833-8843
Main Authors: Pan, Shuang, Fu, Chao, Zhu, Mingjing, He, Luze, Yang, Yingzi, Zhang, Hongdong, Liu, Xiaofeng, Qiu, Feng, Lin, Zhiqun, Peng, Juan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconducting organic–inorganic nanocomposites comprising conjugated polymers (CPs) and semiconducting nanocrystals (NCs) represent an important class of functional materials. The ability to organize CPs and NCs into self-assembled nanostructures in close proximity may enable efficient charge or energy transfer between them for use in flexible electronics, light-emitting displays, and photovoltaics. Herein we report the crafting of one-dimensional (1D) functional nanocomposites composed of all-conjugated diblock copolymers and CdSe nanorods (NRs) via two consecutive self-assembly processes, namely, self-assembly of poly­(3-hexyl­selenophene)-block-poly­(3-butyl­selenophene) (denoted P3HS-b-P3BS) diblock copolymers into nanofibers, followed by self-assembly of P3HS-b-P3BS nanofibers and CdSe NRs to yield P3HS-b-P3BS–CdSe NR nanocomposites. Notably, P3HS-b-P3BS diblock copolymers are first rationally designed and synthesized, exhibiting a narrow optical bandgap and forming nanofibers due to strong interchain π–π stacking (i.e., first self-assembly). Subsequently, the addition of CdSe NRs into P3HS-b-P3BS nanofiber solution results in the formation of 1D P3HS-b-P3BS–CdSe NR nanocomposites driven by the van der Waals interaction between aliphatic ligands on the surface of CdSe NRs and the hexyl side chains of P3HS-b-P3BS and the coordination interaction between the selenium of P3HS and the surface of CdSe NRs (i.e., second self-assembly). Quite intriguingly, an integrated Monte Carlo simulation and experimental study reveals that CdSe NRs are aligned parallel to the long axis of P3HS-b-P3BS nanofibers in an end-to-end mode at low concentration of CdSe. When high concentration of CdSe NRs is introduced, coexistence of the side-by-side and layer-by-layer assemblies of CdSe NRs along P3HS-b-P3BS nanofibers is yielded. Photoluminescence quenching of CdSe NRs is observed, suggesting an efficient charge transfer between CdSe and P3HS-b-P3BS. Such self-assembled conjugated diblock copolymer–quantum rod nanocomposites may find applications in optics, optoelectronics, and sensors.
ISSN:0024-9297
1520-5835
DOI:10.1021/acs.macromol.8b01744