Loading…
Living in the Fast LaneHigh Throughput Controlled/Living Radical Polymerization
Combinatorial and high throughput (HTP) methodologies have long been used by the pharmaceutical industry to accelerate the rate of drug discovery. HTP techniques can also be applied in polymer chemistry to more efficiently elucidate structure–property relationships, to increase the speed of new mate...
Saved in:
Published in: | Macromolecules 2019-01, Vol.52 (1), p.3-23 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Combinatorial and high throughput (HTP) methodologies have long been used by the pharmaceutical industry to accelerate the rate of drug discovery. HTP techniques can also be applied in polymer chemistry to more efficiently elucidate structure–property relationships, to increase the speed of new material development, and to rapidly optimize polymerization conditions. Controlled living/radical polymerization (CLRP) is widely employed in the preparation of potential materials for bioapplications being suitable for a large variety of polymeric materials with various architectures. The versatility of CLRP makes it an ideal candidate for combinatorial and HTP approaches to research, and recently, the development of oxygen tolerant CLRP techniques has greatly simplified the methodology. In this Perspective, we provide an overview of conventional CLRP, including automated parallel synthesizers, as well as oxygen tolerant CLRP applications for HTP polymer research. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.8b01864 |