Loading…

Cyclopropenium-Based Biodegradable Polymers

Cationic polymers offer a wide range of potential biomedical applications. Often, these materials suffer from a lack of degradability under biological conditions, preventing their translation in vivo. We present herein the synthesis and characterization of a series of novel biodegradable polymers be...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2019-05, Vol.52 (9), p.3543-3550
Main Authors: Steinman, Noam Y, Starr, Rachel L, Brucks, Spencer D, Belay, Chen, Meir, Rinat, Golenser, Jacob, Campos, Luis M, Domb, Abraham J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cationic polymers offer a wide range of potential biomedical applications. Often, these materials suffer from a lack of degradability under biological conditions, preventing their translation in vivo. We present herein the synthesis and characterization of a series of novel biodegradable polymers bearing cationic cyclopropenium along a polyester backbone, either linear or cross-linked. The polymers are synthesized stepwise via the reaction between diol-functionalized tris­(amino)-cyclopropenium (TAC) monomers and diacyl chlorides. Incorporation of the TAC moiety with a permanent, pH-independent charge, and hydrophobic groups with sufficient bulkiness causes the polyelectrolyte to form an aqueous dispersion of nanoparticles with a positive surface charge. Smaller hydrophobic TAC substituents inhibit nanoparticle formation because of a lack of hydrophobic bonds within the core of the nanoparticle. The polymers undergo hydrolytic degradation and swell significantly, displaying an important framework for the drug-delivery capabilities of a hydrolytically degradable cationic polyester. One polymer displayed potent antimicrobial activity against Staphylococcus epidermidis. These polymers may have use for the delivery of anionic bioactive agents.
ISSN:0024-9297
1520-5835
DOI:10.1021/acs.macromol.9b00430