Loading…
Chemoproteomic Identification of Serine Hydrolase RBBP9 as a Valacyclovir-Activating Enzyme
Prodrug discovery and development in the pharmaceutical industry have been hampered by a lack of knowledge of prodrug activation pathways. Such knowledge would minimize the risks of prodrug failure by enabling proper selection of preclinical animal models, prediction of pharmacogenomic variability,...
Saved in:
Published in: | Molecular pharmaceutics 2020-05, Vol.17 (5), p.1706-1714 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prodrug discovery and development in the pharmaceutical industry have been hampered by a lack of knowledge of prodrug activation pathways. Such knowledge would minimize the risks of prodrug failure by enabling proper selection of preclinical animal models, prediction of pharmacogenomic variability, and identification of drug–drug interactions. Technologies for annotation of activating enzymes have not kept pace with the growing need. Activity-based protein profiling (ABPP) has matured considerably in recent decades, leading to widespread use in the pharmaceutical industry. Here, we report the extension of competitive ABPP (cABPP) to prodrug-activating enzyme identification in stable isotope-labeled cell lysates using a modified fluorophosphonate probe. Focusing on the antiviral ester prodrug valacyclovir (VACV), we identified serine hydrolase RBBP9 as an activating enzyme in Caco-2 cells via shotgun proteomics, validating the activity via the selective inhibitor emetine (EME). Kinetic characterization of RBBP9 revealed a catalytic efficiency (k cat ·K M –1 = 104 mM–1·s–1) comparable to that of BPHL, the only known VACV-activating enzyme prior to this work. EME incubation in wild-type and Bphl-knockout jejunum and liver lysates demonstrated the near-exclusivity of VACV activation by RBBP9 in the intestine. Additionally, these studies showed that RBBP9 and BPHL are the two major and coequal VACV-activating enzymes in the liver. Single-pass intestinal perfusions of VACV ± EME in mice showed EME coperfusion significantly inhibited the intestinal activation of VACV, implying the in vivo relevance of RBBP9-mediated VACV activation. We envision that others might use the cABPP approach in the future for global, rapid, and efficient discovery of prodrug-activating enzymes. |
---|---|
ISSN: | 1543-8384 1543-8392 |
DOI: | 10.1021/acs.molpharmaceut.0c00131 |