Loading…

Optimized Phase and Crystallinity of Cr 2 (NCN) 3 Dominating Electrochemical Lithium Storage Performance

Cr (NCN) is a potentially high-capacity and fast-charge Li-ion anode owing to its abundant and broad tunnels. However, high intrinsic chemical instability severely restricts its capacity output and electrochemical reversibility. Herein we report an effective crystalline engineering method for optimi...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2024-07, Vol.24 (28), p.8525-8534
Main Authors: Li, Hanlou, Wu, Feng, Guo, Penghui, Zhao, Silong, Qian, Mengmeng, Yu, Chuguang, Yang, Ningning, Cui, Mokai, Yang, Ni, Wang, Jing, Su, Yuefeng, Tan, Guoqiang
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c689-d1be88e9dcbcd39a3e26959c534bd4ca9f7193411aca933786903975988313f83
container_end_page 8534
container_issue 28
container_start_page 8525
container_title Nano letters
container_volume 24
creator Li, Hanlou
Wu, Feng
Guo, Penghui
Zhao, Silong
Qian, Mengmeng
Yu, Chuguang
Yang, Ningning
Cui, Mokai
Yang, Ni
Wang, Jing
Su, Yuefeng
Tan, Guoqiang
description Cr (NCN) is a potentially high-capacity and fast-charge Li-ion anode owing to its abundant and broad tunnels. However, high intrinsic chemical instability severely restricts its capacity output and electrochemical reversibility. Herein we report an effective crystalline engineering method for optimizing its phase and crystallinity. Systematic studies reveal the relevancy between electrochemical performance and crystalline structure; an optimal Cr (NCN) with high phase purity and uniform crystallinity exhibits a high reversible capacity of 590 mAh g and a stable cycling performance of 478 mAh g after 500 cycles. In-operando heating XRD reveals its high thermodynamical stability over 600 °C, and in-operando electrochemical XRD proves its electrochemical Li storage mechanism, consisting of the primary Li-ion intercalation and subsequent conversion reactions. This study introduces a facile and low-cost method for fabricating high-purity Cr (NCN) , and it also confirms that the Li storage of Cr (NCN) can be further improved by tuning its phase and crystallinity.
doi_str_mv 10.1021/acs.nanolett.4c01091
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_nanolett_4c01091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38954769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c689-d1be88e9dcbcd39a3e26959c534bd4ca9f7193411aca933786903975988313f83</originalsourceid><addsrcrecordid>eNo9kMlOwzAURS0EoqXwBwh5CYsUOy-D3xKlZZCqthLdR47jNEYZKttdlK8nqMPqXl3p3MUh5JGzKWchf5XKTTvZ9Y32fhopxhnyKzLmMbAgQQyvL11EI3Ln3A9jDCFmt2QEAuMoTXBM6tXOm9b86pKua-k0lV1JM3twXjaN6Yw_0L4aBhrS52W2fKFAZ31rOulNt6XzRitve1Xr1ijZ0IXxtdm39Nv3Vm41XWtb9baVndL35KaSjdMPp5yQzft8k30Gi9XHV_a2CFQiMCh5oYXQWKpClYASdJhgjCqGqCgjJbFKOULEuRw6QCoSZIBpjEIAh0rAhETHW2V756yu8p01rbSHnLP831s-eMvP3vKTtwF7OmK7fdHq8gKdRcEfWhFs3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimized Phase and Crystallinity of Cr 2 (NCN) 3 Dominating Electrochemical Lithium Storage Performance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Hanlou ; Wu, Feng ; Guo, Penghui ; Zhao, Silong ; Qian, Mengmeng ; Yu, Chuguang ; Yang, Ningning ; Cui, Mokai ; Yang, Ni ; Wang, Jing ; Su, Yuefeng ; Tan, Guoqiang</creator><creatorcontrib>Li, Hanlou ; Wu, Feng ; Guo, Penghui ; Zhao, Silong ; Qian, Mengmeng ; Yu, Chuguang ; Yang, Ningning ; Cui, Mokai ; Yang, Ni ; Wang, Jing ; Su, Yuefeng ; Tan, Guoqiang</creatorcontrib><description>Cr (NCN) is a potentially high-capacity and fast-charge Li-ion anode owing to its abundant and broad tunnels. However, high intrinsic chemical instability severely restricts its capacity output and electrochemical reversibility. Herein we report an effective crystalline engineering method for optimizing its phase and crystallinity. Systematic studies reveal the relevancy between electrochemical performance and crystalline structure; an optimal Cr (NCN) with high phase purity and uniform crystallinity exhibits a high reversible capacity of 590 mAh g and a stable cycling performance of 478 mAh g after 500 cycles. In-operando heating XRD reveals its high thermodynamical stability over 600 °C, and in-operando electrochemical XRD proves its electrochemical Li storage mechanism, consisting of the primary Li-ion intercalation and subsequent conversion reactions. This study introduces a facile and low-cost method for fabricating high-purity Cr (NCN) , and it also confirms that the Li storage of Cr (NCN) can be further improved by tuning its phase and crystallinity.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c01091</identifier><identifier>PMID: 38954769</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nano letters, 2024-07, Vol.24 (28), p.8525-8534</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c689-d1be88e9dcbcd39a3e26959c534bd4ca9f7193411aca933786903975988313f83</cites><orcidid>0000-0002-3254-3865 ; 0000-0002-5144-2832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38954769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hanlou</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Guo, Penghui</creatorcontrib><creatorcontrib>Zhao, Silong</creatorcontrib><creatorcontrib>Qian, Mengmeng</creatorcontrib><creatorcontrib>Yu, Chuguang</creatorcontrib><creatorcontrib>Yang, Ningning</creatorcontrib><creatorcontrib>Cui, Mokai</creatorcontrib><creatorcontrib>Yang, Ni</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Su, Yuefeng</creatorcontrib><creatorcontrib>Tan, Guoqiang</creatorcontrib><title>Optimized Phase and Crystallinity of Cr 2 (NCN) 3 Dominating Electrochemical Lithium Storage Performance</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Cr (NCN) is a potentially high-capacity and fast-charge Li-ion anode owing to its abundant and broad tunnels. However, high intrinsic chemical instability severely restricts its capacity output and electrochemical reversibility. Herein we report an effective crystalline engineering method for optimizing its phase and crystallinity. Systematic studies reveal the relevancy between electrochemical performance and crystalline structure; an optimal Cr (NCN) with high phase purity and uniform crystallinity exhibits a high reversible capacity of 590 mAh g and a stable cycling performance of 478 mAh g after 500 cycles. In-operando heating XRD reveals its high thermodynamical stability over 600 °C, and in-operando electrochemical XRD proves its electrochemical Li storage mechanism, consisting of the primary Li-ion intercalation and subsequent conversion reactions. This study introduces a facile and low-cost method for fabricating high-purity Cr (NCN) , and it also confirms that the Li storage of Cr (NCN) can be further improved by tuning its phase and crystallinity.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURS0EoqXwBwh5CYsUOy-D3xKlZZCqthLdR47jNEYZKttdlK8nqMPqXl3p3MUh5JGzKWchf5XKTTvZ9Y32fhopxhnyKzLmMbAgQQyvL11EI3Ln3A9jDCFmt2QEAuMoTXBM6tXOm9b86pKua-k0lV1JM3twXjaN6Yw_0L4aBhrS52W2fKFAZ31rOulNt6XzRitve1Xr1ijZ0IXxtdm39Nv3Vm41XWtb9baVndL35KaSjdMPp5yQzft8k30Gi9XHV_a2CFQiMCh5oYXQWKpClYASdJhgjCqGqCgjJbFKOULEuRw6QCoSZIBpjEIAh0rAhETHW2V756yu8p01rbSHnLP831s-eMvP3vKTtwF7OmK7fdHq8gKdRcEfWhFs3w</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Li, Hanlou</creator><creator>Wu, Feng</creator><creator>Guo, Penghui</creator><creator>Zhao, Silong</creator><creator>Qian, Mengmeng</creator><creator>Yu, Chuguang</creator><creator>Yang, Ningning</creator><creator>Cui, Mokai</creator><creator>Yang, Ni</creator><creator>Wang, Jing</creator><creator>Su, Yuefeng</creator><creator>Tan, Guoqiang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3254-3865</orcidid><orcidid>https://orcid.org/0000-0002-5144-2832</orcidid></search><sort><creationdate>20240717</creationdate><title>Optimized Phase and Crystallinity of Cr 2 (NCN) 3 Dominating Electrochemical Lithium Storage Performance</title><author>Li, Hanlou ; Wu, Feng ; Guo, Penghui ; Zhao, Silong ; Qian, Mengmeng ; Yu, Chuguang ; Yang, Ningning ; Cui, Mokai ; Yang, Ni ; Wang, Jing ; Su, Yuefeng ; Tan, Guoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c689-d1be88e9dcbcd39a3e26959c534bd4ca9f7193411aca933786903975988313f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hanlou</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Guo, Penghui</creatorcontrib><creatorcontrib>Zhao, Silong</creatorcontrib><creatorcontrib>Qian, Mengmeng</creatorcontrib><creatorcontrib>Yu, Chuguang</creatorcontrib><creatorcontrib>Yang, Ningning</creatorcontrib><creatorcontrib>Cui, Mokai</creatorcontrib><creatorcontrib>Yang, Ni</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Su, Yuefeng</creatorcontrib><creatorcontrib>Tan, Guoqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hanlou</au><au>Wu, Feng</au><au>Guo, Penghui</au><au>Zhao, Silong</au><au>Qian, Mengmeng</au><au>Yu, Chuguang</au><au>Yang, Ningning</au><au>Cui, Mokai</au><au>Yang, Ni</au><au>Wang, Jing</au><au>Su, Yuefeng</au><au>Tan, Guoqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Phase and Crystallinity of Cr 2 (NCN) 3 Dominating Electrochemical Lithium Storage Performance</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-07-17</date><risdate>2024</risdate><volume>24</volume><issue>28</issue><spage>8525</spage><epage>8534</epage><pages>8525-8534</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Cr (NCN) is a potentially high-capacity and fast-charge Li-ion anode owing to its abundant and broad tunnels. However, high intrinsic chemical instability severely restricts its capacity output and electrochemical reversibility. Herein we report an effective crystalline engineering method for optimizing its phase and crystallinity. Systematic studies reveal the relevancy between electrochemical performance and crystalline structure; an optimal Cr (NCN) with high phase purity and uniform crystallinity exhibits a high reversible capacity of 590 mAh g and a stable cycling performance of 478 mAh g after 500 cycles. In-operando heating XRD reveals its high thermodynamical stability over 600 °C, and in-operando electrochemical XRD proves its electrochemical Li storage mechanism, consisting of the primary Li-ion intercalation and subsequent conversion reactions. This study introduces a facile and low-cost method for fabricating high-purity Cr (NCN) , and it also confirms that the Li storage of Cr (NCN) can be further improved by tuning its phase and crystallinity.</abstract><cop>United States</cop><pmid>38954769</pmid><doi>10.1021/acs.nanolett.4c01091</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3254-3865</orcidid><orcidid>https://orcid.org/0000-0002-5144-2832</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-07, Vol.24 (28), p.8525-8534
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_acs_nanolett_4c01091
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Optimized Phase and Crystallinity of Cr 2 (NCN) 3 Dominating Electrochemical Lithium Storage Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A42%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Phase%20and%20Crystallinity%20of%20Cr%202%20(NCN)%203%20Dominating%20Electrochemical%20Lithium%20Storage%20Performance&rft.jtitle=Nano%20letters&rft.au=Li,%20Hanlou&rft.date=2024-07-17&rft.volume=24&rft.issue=28&rft.spage=8525&rft.epage=8534&rft.pages=8525-8534&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c01091&rft_dat=%3Cpubmed_cross%3E38954769%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c689-d1be88e9dcbcd39a3e26959c534bd4ca9f7193411aca933786903975988313f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38954769&rfr_iscdi=true