Loading…
Augmented Extraction Efficiency of a Hot D Exciton in MoS 2 via Intervalley Scattering
Prolonging hot carrier cooling, a crucial factor in optoelectronic applications, including hot carrier photovoltaics, presents a significant challenge. High-energy band-nesting excitons within parallel bands offer a promising and underexplored avenue for addressing this issue. Here, we exploit an ex...
Saved in:
Published in: | Nano letters 2024-09, Vol.24 (36), p.11163-11169 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prolonging hot carrier cooling, a crucial factor in optoelectronic applications, including hot carrier photovoltaics, presents a significant challenge. High-energy band-nesting excitons within parallel bands offer a promising and underexplored avenue for addressing this issue. Here, we exploit an exceptional D exciton cooling prolongation of 2 to 3 orders of magnitude compared to sub-picosecond in typical transition metal dichalcogenides (TMDs) owing to the complex Coulomb environment and the sequential and mismatch-valley relaxation. Simultaneously, the intervalley scattering upconversion of band-edge excitons with the slow D exciton formation in the metastable Γ valley/hill also reduces the cooling rate. We successfully extract D and C excitons as hot carriers through integrating with various thicknesses of TiO
, achieving the highest efficiency of 98% and 85% at a Ti thickness of 2 nm. Our findings highlight the potential of band-nesting excitons for extending hot carrier cooling time, paving the way for advancements in hot carrier-based optoelectronic devices. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.4c01837 |