Loading…
Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes
Red phosphorus (RP) is a promising anode material for lithium-ion batteries due to its earth abundance and a high theoretical capacity of 2596 mA h g–1. Although RP-based anodes for lithium-ion batteries have been reported, they were all in the form of carbon–P composites, including P–graphene, P–gr...
Saved in:
Published in: | Nano letters 2017-02, Vol.17 (2), p.1240-1247 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Red phosphorus (RP) is a promising anode material for lithium-ion batteries due to its earth abundance and a high theoretical capacity of 2596 mA h g–1. Although RP-based anodes for lithium-ion batteries have been reported, they were all in the form of carbon–P composites, including P–graphene, P–graphite, P–carbon nanotubes (CNTs), and P–carbon black, to improve P’s extremely low conductivity and large volume change during cycling process. Here, we report the large-scale synthesis of red phosphorus nanoparticles (RPNPs) with sizes ranging from 100 to 200 nm by reacting PI3 with ethylene glycol in the presence of cetyltrimethylammonium bromide (CTAB) in ambient environment. Unlike the insulator behavior of commercial RP (conductivity of |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.6b05081 |