Loading…
Photothermal-Promoted Morphology Transformation in Vivo Monitored by Photoacoustic Imaging
The in situ construction of the nanoassembly has been demonstrated to improve the performance of bioactive molecules, but the control of the morphology of nanomaterials in vivo still remains a tremendous challenge. Herein, a photothermal-promoted morphology transformation (PMT) strategy is developed...
Saved in:
Published in: | Nano letters 2020-02, Vol.20 (2), p.1286-1295 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The in situ construction of the nanoassembly has been demonstrated to improve the performance of bioactive molecules, but the control of the morphology of nanomaterials in vivo still remains a tremendous challenge. Herein, a photothermal-promoted morphology transformation (PMT) strategy is developed to accelerate the formation of nanomaterials for improving the biological performance of drug molecules. Compared with the spontaneous process, the rate of transformation increases by ∼4 times in the PMT process. Owing to increased assembly rate, the tumor accumulation of drugs is ∼2-fold than that without photo irradiation, which inhibits tumor growth effectively. More importantly, the chemical reassembly process in vitro and in vivo is monitored by the advanced ratiometric photoacoustic image, confirming the photoinduced transformation acceleration. Through the noninvasively artificial control on assembly dynamics in vivo, the PMT strategy provides a new insight for developing the intelligent theranostics. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b04752 |