Loading…
CeO x ‑Mesoporous Silica Nanoparticle Antioxidants to Enhance the Stability of Organic Photovoltaic Devices
Mitigating ultraviolet exposure-induced photodegradation remains a critical challenge to the long-term stability of organic photovoltaics (OPVs). Here, we improved the stability of the OPV device by introducing an antioxidant interlayer composed of nanocrystalline ceria supported on mesoporous silic...
Saved in:
Published in: | ACS applied electronic materials 2024-09, Vol.6 (9), p.6391-6400 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mitigating ultraviolet exposure-induced photodegradation remains a critical challenge to the long-term stability of organic photovoltaics (OPVs). Here, we improved the stability of the OPV device by introducing an antioxidant interlayer composed of nanocrystalline ceria supported on mesoporous silica nanoparticles (CeO x -MSN). The CeO x nanocrystals within the CeO x -MSN exhibited a high density of oxygen vacancies and a large ratio of Ce(III) chemical states known to scavenge reactive oxygen species. Optimizing the particle size of the CeO x nanocrystals further enhanced the ratio of Ce(III) states, enabling superior radical scavenging efficacy in methyl violet degradation tests compared with commercial CeO x nanostructures. The OPV performance test confirmed that the optimized CeO x -MSN (CeO x -MSN_S) can scavenge radicals without a degradation in initial performance under one-sun illumination. More importantly, the photostability test revealed that the OPV device with CeO x -MSN_S retained 73% of initial performance while the conventional device retained only 54%, corroborating the excellent radical scavenging efficacy of CeO x -MSN_S. |
---|---|
ISSN: | 2637-6113 2637-6113 |
DOI: | 10.1021/acsaelm.4c00867 |