Loading…
Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design
Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable...
Saved in:
Published in: | ACS applied electronic materials 2024-11, Vol.6 (11), p.8394-8403 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843 |
container_end_page | 8403 |
container_issue | 11 |
container_start_page | 8394 |
container_title | ACS applied electronic materials |
container_volume | 6 |
creator | Wei, Xinkong Pei, Yue Li, Yunxia Zhai, Junyi Han, Weihua |
description | Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable. By using nickel (Ni) foam as a sacrificial template, we deposit Ag nanowires (Ag NWs) to form the heating element, which is then encapsulated in polydimethylsiloxane (PDMS). Crucially, the PDMS coats only the inner surfaces of the micropipes, leaving the interstitial spaces unfilled, creating a breathable 3D conductive network. This contrasts with traditional TFHs that are typically nonbreathable and limited in flexibility, often leading to heat accumulation and discomfort. Our TFH maintained consistent performance over 1000 cycles of bending, stretching, and water immersion. Even with up to 25% stretching, resistance changes remained under 13%. Breathability tests revealed a 5:1 ratio in deionized water permeability between an uncovered bottle and one covered with our film with a permeation rate of 7 mg/cm2·h. Also, the TFH effectively reached 67 °C within 1 min under a 3.5 V bias. Unlike existing methods that neglect breathability or require complex fabrication, our strategy offers a simple yet robust solution to the limitations of conventional TFHs, combining both breathability and stretchability. |
doi_str_mv | 10.1021/acsaelm.4c01610 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaelm_4c01610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d116761459</sourcerecordid><originalsourceid>FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIVKUzq3eUNrYTuxmh9AOpEgNlji7upXGV2JXtDv33GLUDC8t9vXune4-QZ5ZPWc7ZDHQA7IdpoXMmWX5HRlwKlUnGxP2f-pFMQjjmeaLwgpdsRPql7cBqYw904YbW-UjB7unqbHU0zkJv4oUaS7-ix6g7aHqkuw794GKKcLqkLsEr0w90gxDRBxo7786Hjr75NLhS3jGYg30iDy30ASe3PCbfq-Vuscm2n-uPxes2g_R8zHgjdIOVhkoi7kHLomolL7koG9nOQWJbFVxLpUqlsMSkBKu9njMlCsHUvBBjMrve1d6F4LGtT94M4C81y-tfv-qbX_XNr8R4uTISUB_d2Sfl4d_tHz9nb4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wei, Xinkong ; Pei, Yue ; Li, Yunxia ; Zhai, Junyi ; Han, Weihua</creator><creatorcontrib>Wei, Xinkong ; Pei, Yue ; Li, Yunxia ; Zhai, Junyi ; Han, Weihua</creatorcontrib><description>Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable. By using nickel (Ni) foam as a sacrificial template, we deposit Ag nanowires (Ag NWs) to form the heating element, which is then encapsulated in polydimethylsiloxane (PDMS). Crucially, the PDMS coats only the inner surfaces of the micropipes, leaving the interstitial spaces unfilled, creating a breathable 3D conductive network. This contrasts with traditional TFHs that are typically nonbreathable and limited in flexibility, often leading to heat accumulation and discomfort. Our TFH maintained consistent performance over 1000 cycles of bending, stretching, and water immersion. Even with up to 25% stretching, resistance changes remained under 13%. Breathability tests revealed a 5:1 ratio in deionized water permeability between an uncovered bottle and one covered with our film with a permeation rate of 7 mg/cm2·h. Also, the TFH effectively reached 67 °C within 1 min under a 3.5 V bias. Unlike existing methods that neglect breathability or require complex fabrication, our strategy offers a simple yet robust solution to the limitations of conventional TFHs, combining both breathability and stretchability.</description><identifier>ISSN: 2637-6113</identifier><identifier>EISSN: 2637-6113</identifier><identifier>DOI: 10.1021/acsaelm.4c01610</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied electronic materials, 2024-11, Vol.6 (11), p.8394-8403</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843</cites><orcidid>0000-0003-3890-3080 ; 0000-0001-8900-4638 ; 0000-0002-9313-0749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wei, Xinkong</creatorcontrib><creatorcontrib>Pei, Yue</creatorcontrib><creatorcontrib>Li, Yunxia</creatorcontrib><creatorcontrib>Zhai, Junyi</creatorcontrib><creatorcontrib>Han, Weihua</creatorcontrib><title>Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design</title><title>ACS applied electronic materials</title><addtitle>ACS Appl. Electron. Mater</addtitle><description>Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable. By using nickel (Ni) foam as a sacrificial template, we deposit Ag nanowires (Ag NWs) to form the heating element, which is then encapsulated in polydimethylsiloxane (PDMS). Crucially, the PDMS coats only the inner surfaces of the micropipes, leaving the interstitial spaces unfilled, creating a breathable 3D conductive network. This contrasts with traditional TFHs that are typically nonbreathable and limited in flexibility, often leading to heat accumulation and discomfort. Our TFH maintained consistent performance over 1000 cycles of bending, stretching, and water immersion. Even with up to 25% stretching, resistance changes remained under 13%. Breathability tests revealed a 5:1 ratio in deionized water permeability between an uncovered bottle and one covered with our film with a permeation rate of 7 mg/cm2·h. Also, the TFH effectively reached 67 °C within 1 min under a 3.5 V bias. Unlike existing methods that neglect breathability or require complex fabrication, our strategy offers a simple yet robust solution to the limitations of conventional TFHs, combining both breathability and stretchability.</description><issn>2637-6113</issn><issn>2637-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIVKUzq3eUNrYTuxmh9AOpEgNlji7upXGV2JXtDv33GLUDC8t9vXune4-QZ5ZPWc7ZDHQA7IdpoXMmWX5HRlwKlUnGxP2f-pFMQjjmeaLwgpdsRPql7cBqYw904YbW-UjB7unqbHU0zkJv4oUaS7-ix6g7aHqkuw794GKKcLqkLsEr0w90gxDRBxo7786Hjr75NLhS3jGYg30iDy30ASe3PCbfq-Vuscm2n-uPxes2g_R8zHgjdIOVhkoi7kHLomolL7koG9nOQWJbFVxLpUqlsMSkBKu9njMlCsHUvBBjMrve1d6F4LGtT94M4C81y-tfv-qbX_XNr8R4uTISUB_d2Sfl4d_tHz9nb4I</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Wei, Xinkong</creator><creator>Pei, Yue</creator><creator>Li, Yunxia</creator><creator>Zhai, Junyi</creator><creator>Han, Weihua</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3890-3080</orcidid><orcidid>https://orcid.org/0000-0001-8900-4638</orcidid><orcidid>https://orcid.org/0000-0002-9313-0749</orcidid></search><sort><creationdate>20241126</creationdate><title>Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design</title><author>Wei, Xinkong ; Pei, Yue ; Li, Yunxia ; Zhai, Junyi ; Han, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xinkong</creatorcontrib><creatorcontrib>Pei, Yue</creatorcontrib><creatorcontrib>Li, Yunxia</creatorcontrib><creatorcontrib>Zhai, Junyi</creatorcontrib><creatorcontrib>Han, Weihua</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xinkong</au><au>Pei, Yue</au><au>Li, Yunxia</au><au>Zhai, Junyi</au><au>Han, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design</atitle><jtitle>ACS applied electronic materials</jtitle><addtitle>ACS Appl. Electron. Mater</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>6</volume><issue>11</issue><spage>8394</spage><epage>8403</epage><pages>8394-8403</pages><issn>2637-6113</issn><eissn>2637-6113</eissn><abstract>Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable. By using nickel (Ni) foam as a sacrificial template, we deposit Ag nanowires (Ag NWs) to form the heating element, which is then encapsulated in polydimethylsiloxane (PDMS). Crucially, the PDMS coats only the inner surfaces of the micropipes, leaving the interstitial spaces unfilled, creating a breathable 3D conductive network. This contrasts with traditional TFHs that are typically nonbreathable and limited in flexibility, often leading to heat accumulation and discomfort. Our TFH maintained consistent performance over 1000 cycles of bending, stretching, and water immersion. Even with up to 25% stretching, resistance changes remained under 13%. Breathability tests revealed a 5:1 ratio in deionized water permeability between an uncovered bottle and one covered with our film with a permeation rate of 7 mg/cm2·h. Also, the TFH effectively reached 67 °C within 1 min under a 3.5 V bias. Unlike existing methods that neglect breathability or require complex fabrication, our strategy offers a simple yet robust solution to the limitations of conventional TFHs, combining both breathability and stretchability.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaelm.4c01610</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3890-3080</orcidid><orcidid>https://orcid.org/0000-0001-8900-4638</orcidid><orcidid>https://orcid.org/0000-0002-9313-0749</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2637-6113 |
ispartof | ACS applied electronic materials, 2024-11, Vol.6 (11), p.8394-8403 |
issn | 2637-6113 2637-6113 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsaelm_4c01610 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Comfort%20and%20Functionality%20in%20Stretchable%20Thermotherapy%20Thin%20Film%20Heaters%20through%20Breathable%20Design&rft.jtitle=ACS%20applied%20electronic%20materials&rft.au=Wei,%20Xinkong&rft.date=2024-11-26&rft.volume=6&rft.issue=11&rft.spage=8394&rft.epage=8403&rft.pages=8394-8403&rft.issn=2637-6113&rft.eissn=2637-6113&rft_id=info:doi/10.1021/acsaelm.4c01610&rft_dat=%3Cacs_cross%3Ed116761459%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |