Loading…

Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design

Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied electronic materials 2024-11, Vol.6 (11), p.8394-8403
Main Authors: Wei, Xinkong, Pei, Yue, Li, Yunxia, Zhai, Junyi, Han, Weihua
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843
container_end_page 8403
container_issue 11
container_start_page 8394
container_title ACS applied electronic materials
container_volume 6
creator Wei, Xinkong
Pei, Yue
Li, Yunxia
Zhai, Junyi
Han, Weihua
description Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable. By using nickel (Ni) foam as a sacrificial template, we deposit Ag nanowires (Ag NWs) to form the heating element, which is then encapsulated in polydimethylsiloxane (PDMS). Crucially, the PDMS coats only the inner surfaces of the micropipes, leaving the interstitial spaces unfilled, creating a breathable 3D conductive network. This contrasts with traditional TFHs that are typically nonbreathable and limited in flexibility, often leading to heat accumulation and discomfort. Our TFH maintained consistent performance over 1000 cycles of bending, stretching, and water immersion. Even with up to 25% stretching, resistance changes remained under 13%. Breathability tests revealed a 5:1 ratio in deionized water permeability between an uncovered bottle and one covered with our film with a permeation rate of 7 mg/cm2·h. Also, the TFH effectively reached 67 °C within 1 min under a 3.5 V bias. Unlike existing methods that neglect breathability or require complex fabrication, our strategy offers a simple yet robust solution to the limitations of conventional TFHs, combining both breathability and stretchability.
doi_str_mv 10.1021/acsaelm.4c01610
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaelm_4c01610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d116761459</sourcerecordid><originalsourceid>FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIVKUzq3eUNrYTuxmh9AOpEgNlji7upXGV2JXtDv33GLUDC8t9vXune4-QZ5ZPWc7ZDHQA7IdpoXMmWX5HRlwKlUnGxP2f-pFMQjjmeaLwgpdsRPql7cBqYw904YbW-UjB7unqbHU0zkJv4oUaS7-ix6g7aHqkuw794GKKcLqkLsEr0w90gxDRBxo7786Hjr75NLhS3jGYg30iDy30ASe3PCbfq-Vuscm2n-uPxes2g_R8zHgjdIOVhkoi7kHLomolL7koG9nOQWJbFVxLpUqlsMSkBKu9njMlCsHUvBBjMrve1d6F4LGtT94M4C81y-tfv-qbX_XNr8R4uTISUB_d2Sfl4d_tHz9nb4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wei, Xinkong ; Pei, Yue ; Li, Yunxia ; Zhai, Junyi ; Han, Weihua</creator><creatorcontrib>Wei, Xinkong ; Pei, Yue ; Li, Yunxia ; Zhai, Junyi ; Han, Weihua</creatorcontrib><description>Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable. By using nickel (Ni) foam as a sacrificial template, we deposit Ag nanowires (Ag NWs) to form the heating element, which is then encapsulated in polydimethylsiloxane (PDMS). Crucially, the PDMS coats only the inner surfaces of the micropipes, leaving the interstitial spaces unfilled, creating a breathable 3D conductive network. This contrasts with traditional TFHs that are typically nonbreathable and limited in flexibility, often leading to heat accumulation and discomfort. Our TFH maintained consistent performance over 1000 cycles of bending, stretching, and water immersion. Even with up to 25% stretching, resistance changes remained under 13%. Breathability tests revealed a 5:1 ratio in deionized water permeability between an uncovered bottle and one covered with our film with a permeation rate of 7 mg/cm2·h. Also, the TFH effectively reached 67 °C within 1 min under a 3.5 V bias. Unlike existing methods that neglect breathability or require complex fabrication, our strategy offers a simple yet robust solution to the limitations of conventional TFHs, combining both breathability and stretchability.</description><identifier>ISSN: 2637-6113</identifier><identifier>EISSN: 2637-6113</identifier><identifier>DOI: 10.1021/acsaelm.4c01610</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied electronic materials, 2024-11, Vol.6 (11), p.8394-8403</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843</cites><orcidid>0000-0003-3890-3080 ; 0000-0001-8900-4638 ; 0000-0002-9313-0749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wei, Xinkong</creatorcontrib><creatorcontrib>Pei, Yue</creatorcontrib><creatorcontrib>Li, Yunxia</creatorcontrib><creatorcontrib>Zhai, Junyi</creatorcontrib><creatorcontrib>Han, Weihua</creatorcontrib><title>Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design</title><title>ACS applied electronic materials</title><addtitle>ACS Appl. Electron. Mater</addtitle><description>Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable. By using nickel (Ni) foam as a sacrificial template, we deposit Ag nanowires (Ag NWs) to form the heating element, which is then encapsulated in polydimethylsiloxane (PDMS). Crucially, the PDMS coats only the inner surfaces of the micropipes, leaving the interstitial spaces unfilled, creating a breathable 3D conductive network. This contrasts with traditional TFHs that are typically nonbreathable and limited in flexibility, often leading to heat accumulation and discomfort. Our TFH maintained consistent performance over 1000 cycles of bending, stretching, and water immersion. Even with up to 25% stretching, resistance changes remained under 13%. Breathability tests revealed a 5:1 ratio in deionized water permeability between an uncovered bottle and one covered with our film with a permeation rate of 7 mg/cm2·h. Also, the TFH effectively reached 67 °C within 1 min under a 3.5 V bias. Unlike existing methods that neglect breathability or require complex fabrication, our strategy offers a simple yet robust solution to the limitations of conventional TFHs, combining both breathability and stretchability.</description><issn>2637-6113</issn><issn>2637-6113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIVKUzq3eUNrYTuxmh9AOpEgNlji7upXGV2JXtDv33GLUDC8t9vXune4-QZ5ZPWc7ZDHQA7IdpoXMmWX5HRlwKlUnGxP2f-pFMQjjmeaLwgpdsRPql7cBqYw904YbW-UjB7unqbHU0zkJv4oUaS7-ix6g7aHqkuw794GKKcLqkLsEr0w90gxDRBxo7786Hjr75NLhS3jGYg30iDy30ASe3PCbfq-Vuscm2n-uPxes2g_R8zHgjdIOVhkoi7kHLomolL7koG9nOQWJbFVxLpUqlsMSkBKu9njMlCsHUvBBjMrve1d6F4LGtT94M4C81y-tfv-qbX_XNr8R4uTISUB_d2Sfl4d_tHz9nb4I</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Wei, Xinkong</creator><creator>Pei, Yue</creator><creator>Li, Yunxia</creator><creator>Zhai, Junyi</creator><creator>Han, Weihua</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3890-3080</orcidid><orcidid>https://orcid.org/0000-0001-8900-4638</orcidid><orcidid>https://orcid.org/0000-0002-9313-0749</orcidid></search><sort><creationdate>20241126</creationdate><title>Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design</title><author>Wei, Xinkong ; Pei, Yue ; Li, Yunxia ; Zhai, Junyi ; Han, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xinkong</creatorcontrib><creatorcontrib>Pei, Yue</creatorcontrib><creatorcontrib>Li, Yunxia</creatorcontrib><creatorcontrib>Zhai, Junyi</creatorcontrib><creatorcontrib>Han, Weihua</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xinkong</au><au>Pei, Yue</au><au>Li, Yunxia</au><au>Zhai, Junyi</au><au>Han, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design</atitle><jtitle>ACS applied electronic materials</jtitle><addtitle>ACS Appl. Electron. Mater</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>6</volume><issue>11</issue><spage>8394</spage><epage>8403</epage><pages>8394-8403</pages><issn>2637-6113</issn><eissn>2637-6113</eissn><abstract>Stretchable thin film heaters (TFHs) are essential for localized thermotherapy, conforming to the skin and joints. However, conventional TFHs made from nonbreathable elastomers often cause discomfort and increase infection risks. We propose a sample TFH design that is both breathable and stretchable. By using nickel (Ni) foam as a sacrificial template, we deposit Ag nanowires (Ag NWs) to form the heating element, which is then encapsulated in polydimethylsiloxane (PDMS). Crucially, the PDMS coats only the inner surfaces of the micropipes, leaving the interstitial spaces unfilled, creating a breathable 3D conductive network. This contrasts with traditional TFHs that are typically nonbreathable and limited in flexibility, often leading to heat accumulation and discomfort. Our TFH maintained consistent performance over 1000 cycles of bending, stretching, and water immersion. Even with up to 25% stretching, resistance changes remained under 13%. Breathability tests revealed a 5:1 ratio in deionized water permeability between an uncovered bottle and one covered with our film with a permeation rate of 7 mg/cm2·h. Also, the TFH effectively reached 67 °C within 1 min under a 3.5 V bias. Unlike existing methods that neglect breathability or require complex fabrication, our strategy offers a simple yet robust solution to the limitations of conventional TFHs, combining both breathability and stretchability.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaelm.4c01610</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3890-3080</orcidid><orcidid>https://orcid.org/0000-0001-8900-4638</orcidid><orcidid>https://orcid.org/0000-0002-9313-0749</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2637-6113
ispartof ACS applied electronic materials, 2024-11, Vol.6 (11), p.8394-8403
issn 2637-6113
2637-6113
language eng
recordid cdi_crossref_primary_10_1021_acsaelm_4c01610
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Enhancing Comfort and Functionality in Stretchable Thermotherapy Thin Film Heaters through Breathable Design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Comfort%20and%20Functionality%20in%20Stretchable%20Thermotherapy%20Thin%20Film%20Heaters%20through%20Breathable%20Design&rft.jtitle=ACS%20applied%20electronic%20materials&rft.au=Wei,%20Xinkong&rft.date=2024-11-26&rft.volume=6&rft.issue=11&rft.spage=8394&rft.epage=8403&rft.pages=8394-8403&rft.issn=2637-6113&rft.eissn=2637-6113&rft_id=info:doi/10.1021/acsaelm.4c01610&rft_dat=%3Cacs_cross%3Ed116761459%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a161t-2b3cbe9ca96eedac649f625235b6f8a6ef942c677577e5e242e9dc81734317843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true