Loading…

Significance of Electrolyte Additive Molecule Structure in Constructing Robust Interphases on High-Voltage Cathodes

Electrolyte additives have been successfully applied for the performance amelioration of lithium-ion batteries, especially under high voltage, which are based on the protective interphases on anode and cathode. Many additives have been proposed but less knowledge is available on the relationship bet...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials 2020-03, Vol.3 (3), p.3049-3058
Main Authors: Li, Jianhui, Liao, Yuqing, Fan, Weizhen, Li, Zifei, Li, Guanjie, Zhang, Qiankui, Xing, Lidan, Xu, Mengqing, Li, Weishan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a274t-6f6c62006aeada18d92265b75ac3f39c322b9e187f655882a3330f12d30a01be3
cites cdi_FETCH-LOGICAL-a274t-6f6c62006aeada18d92265b75ac3f39c322b9e187f655882a3330f12d30a01be3
container_end_page 3058
container_issue 3
container_start_page 3049
container_title ACS applied energy materials
container_volume 3
creator Li, Jianhui
Liao, Yuqing
Fan, Weizhen
Li, Zifei
Li, Guanjie
Zhang, Qiankui
Xing, Lidan
Xu, Mengqing
Li, Weishan
description Electrolyte additives have been successfully applied for the performance amelioration of lithium-ion batteries, especially under high voltage, which are based on the protective interphases on anode and cathode. Many additives have been proposed but less knowledge is available on the relationship between additive molecule structure and the interphase stability. In this work, we uncover the significance of the additive molecule structure in constructing a stable and robust interphase by comparing the effects of two similar additives, trimethyl borate (TMB) and tripropyl borate (TPB), on the performance of a layered lithium-rich oxide cathode (LRO) under a high voltage (4.8 V). Electrochemical measurements combined with physical characterizations and theoretical calculations demonstrate that TMB and TPB exhibit similar oxidative activity and both can build protective cathode interphases on LRO but they yield different cyclic stability improvement for LRO. The B-containing species derived from the TMB oxidation are more stable, yielding a more robust interphase than those from the TPB oxidation. This established relationship paves a road to design electrolyte additives more efficiently for high-voltage batteries.
doi_str_mv 10.1021/acsaem.0c00168
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_0c00168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c712489292</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-6f6c62006aeada18d92265b75ac3f39c322b9e187f655882a3330f12d30a01be3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOOaunnMWOvNjTdvjKNMNJoJTryVNX7qMLhlJKuy_t9odvHh67335fh9fPgjdUzKnhNFHqYKE45woQqjIr9CEpdkiIYVg13_2WzQL4UAGT0EFK4oJCjvTWqONklYBdhqvOlDRu-4cAS-bxkTzBfjFDWrfAd5F36vYe8DG4tLZ8Hsb2-I3V_ch4o2N4E97GSBgZ_HatPvk03VRtoBLGfeugXCHbrTsAswuc4o-nlbv5TrZvj5vyuU2kSxbxERooQQjREiQjaR5UzAm0jpLpeKaF4ozVhdA80yLNM1zJjnnRFPWcCIJrYFP0Xz8q7wLwYOuTt4cpT9XlFQ_1KqRWnWhNgQexsCgVwfXezvU-8_8DWywcOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Significance of Electrolyte Additive Molecule Structure in Constructing Robust Interphases on High-Voltage Cathodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Jianhui ; Liao, Yuqing ; Fan, Weizhen ; Li, Zifei ; Li, Guanjie ; Zhang, Qiankui ; Xing, Lidan ; Xu, Mengqing ; Li, Weishan</creator><creatorcontrib>Li, Jianhui ; Liao, Yuqing ; Fan, Weizhen ; Li, Zifei ; Li, Guanjie ; Zhang, Qiankui ; Xing, Lidan ; Xu, Mengqing ; Li, Weishan</creatorcontrib><description>Electrolyte additives have been successfully applied for the performance amelioration of lithium-ion batteries, especially under high voltage, which are based on the protective interphases on anode and cathode. Many additives have been proposed but less knowledge is available on the relationship between additive molecule structure and the interphase stability. In this work, we uncover the significance of the additive molecule structure in constructing a stable and robust interphase by comparing the effects of two similar additives, trimethyl borate (TMB) and tripropyl borate (TPB), on the performance of a layered lithium-rich oxide cathode (LRO) under a high voltage (4.8 V). Electrochemical measurements combined with physical characterizations and theoretical calculations demonstrate that TMB and TPB exhibit similar oxidative activity and both can build protective cathode interphases on LRO but they yield different cyclic stability improvement for LRO. The B-containing species derived from the TMB oxidation are more stable, yielding a more robust interphase than those from the TPB oxidation. This established relationship paves a road to design electrolyte additives more efficiently for high-voltage batteries.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.0c00168</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2020-03, Vol.3 (3), p.3049-3058</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-6f6c62006aeada18d92265b75ac3f39c322b9e187f655882a3330f12d30a01be3</citedby><cites>FETCH-LOGICAL-a274t-6f6c62006aeada18d92265b75ac3f39c322b9e187f655882a3330f12d30a01be3</cites><orcidid>0000-0002-1495-4441 ; 0000-0001-6324-0851 ; 0000-0002-3642-7204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Liao, Yuqing</creatorcontrib><creatorcontrib>Fan, Weizhen</creatorcontrib><creatorcontrib>Li, Zifei</creatorcontrib><creatorcontrib>Li, Guanjie</creatorcontrib><creatorcontrib>Zhang, Qiankui</creatorcontrib><creatorcontrib>Xing, Lidan</creatorcontrib><creatorcontrib>Xu, Mengqing</creatorcontrib><creatorcontrib>Li, Weishan</creatorcontrib><title>Significance of Electrolyte Additive Molecule Structure in Constructing Robust Interphases on High-Voltage Cathodes</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Electrolyte additives have been successfully applied for the performance amelioration of lithium-ion batteries, especially under high voltage, which are based on the protective interphases on anode and cathode. Many additives have been proposed but less knowledge is available on the relationship between additive molecule structure and the interphase stability. In this work, we uncover the significance of the additive molecule structure in constructing a stable and robust interphase by comparing the effects of two similar additives, trimethyl borate (TMB) and tripropyl borate (TPB), on the performance of a layered lithium-rich oxide cathode (LRO) under a high voltage (4.8 V). Electrochemical measurements combined with physical characterizations and theoretical calculations demonstrate that TMB and TPB exhibit similar oxidative activity and both can build protective cathode interphases on LRO but they yield different cyclic stability improvement for LRO. The B-containing species derived from the TMB oxidation are more stable, yielding a more robust interphase than those from the TPB oxidation. This established relationship paves a road to design electrolyte additives more efficiently for high-voltage batteries.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOOaunnMWOvNjTdvjKNMNJoJTryVNX7qMLhlJKuy_t9odvHh67335fh9fPgjdUzKnhNFHqYKE45woQqjIr9CEpdkiIYVg13_2WzQL4UAGT0EFK4oJCjvTWqONklYBdhqvOlDRu-4cAS-bxkTzBfjFDWrfAd5F36vYe8DG4tLZ8Hsb2-I3V_ch4o2N4E97GSBgZ_HatPvk03VRtoBLGfeugXCHbrTsAswuc4o-nlbv5TrZvj5vyuU2kSxbxERooQQjREiQjaR5UzAm0jpLpeKaF4ozVhdA80yLNM1zJjnnRFPWcCIJrYFP0Xz8q7wLwYOuTt4cpT9XlFQ_1KqRWnWhNgQexsCgVwfXezvU-8_8DWywcOA</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Li, Jianhui</creator><creator>Liao, Yuqing</creator><creator>Fan, Weizhen</creator><creator>Li, Zifei</creator><creator>Li, Guanjie</creator><creator>Zhang, Qiankui</creator><creator>Xing, Lidan</creator><creator>Xu, Mengqing</creator><creator>Li, Weishan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1495-4441</orcidid><orcidid>https://orcid.org/0000-0001-6324-0851</orcidid><orcidid>https://orcid.org/0000-0002-3642-7204</orcidid></search><sort><creationdate>20200323</creationdate><title>Significance of Electrolyte Additive Molecule Structure in Constructing Robust Interphases on High-Voltage Cathodes</title><author>Li, Jianhui ; Liao, Yuqing ; Fan, Weizhen ; Li, Zifei ; Li, Guanjie ; Zhang, Qiankui ; Xing, Lidan ; Xu, Mengqing ; Li, Weishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-6f6c62006aeada18d92265b75ac3f39c322b9e187f655882a3330f12d30a01be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Liao, Yuqing</creatorcontrib><creatorcontrib>Fan, Weizhen</creatorcontrib><creatorcontrib>Li, Zifei</creatorcontrib><creatorcontrib>Li, Guanjie</creatorcontrib><creatorcontrib>Zhang, Qiankui</creatorcontrib><creatorcontrib>Xing, Lidan</creatorcontrib><creatorcontrib>Xu, Mengqing</creatorcontrib><creatorcontrib>Li, Weishan</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jianhui</au><au>Liao, Yuqing</au><au>Fan, Weizhen</au><au>Li, Zifei</au><au>Li, Guanjie</au><au>Zhang, Qiankui</au><au>Xing, Lidan</au><au>Xu, Mengqing</au><au>Li, Weishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Significance of Electrolyte Additive Molecule Structure in Constructing Robust Interphases on High-Voltage Cathodes</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2020-03-23</date><risdate>2020</risdate><volume>3</volume><issue>3</issue><spage>3049</spage><epage>3058</epage><pages>3049-3058</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Electrolyte additives have been successfully applied for the performance amelioration of lithium-ion batteries, especially under high voltage, which are based on the protective interphases on anode and cathode. Many additives have been proposed but less knowledge is available on the relationship between additive molecule structure and the interphase stability. In this work, we uncover the significance of the additive molecule structure in constructing a stable and robust interphase by comparing the effects of two similar additives, trimethyl borate (TMB) and tripropyl borate (TPB), on the performance of a layered lithium-rich oxide cathode (LRO) under a high voltage (4.8 V). Electrochemical measurements combined with physical characterizations and theoretical calculations demonstrate that TMB and TPB exhibit similar oxidative activity and both can build protective cathode interphases on LRO but they yield different cyclic stability improvement for LRO. The B-containing species derived from the TMB oxidation are more stable, yielding a more robust interphase than those from the TPB oxidation. This established relationship paves a road to design electrolyte additives more efficiently for high-voltage batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.0c00168</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1495-4441</orcidid><orcidid>https://orcid.org/0000-0001-6324-0851</orcidid><orcidid>https://orcid.org/0000-0002-3642-7204</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2020-03, Vol.3 (3), p.3049-3058
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_0c00168
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Significance of Electrolyte Additive Molecule Structure in Constructing Robust Interphases on High-Voltage Cathodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Significance%20of%20Electrolyte%20Additive%20Molecule%20Structure%20in%20Constructing%20Robust%20Interphases%20on%20High-Voltage%20Cathodes&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Li,%20Jianhui&rft.date=2020-03-23&rft.volume=3&rft.issue=3&rft.spage=3049&rft.epage=3058&rft.pages=3049-3058&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.0c00168&rft_dat=%3Cacs_cross%3Ec712489292%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a274t-6f6c62006aeada18d92265b75ac3f39c322b9e187f655882a3330f12d30a01be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true