Loading…

Insights into Self-Discharge of Lithium– and Magnesium–Sulfur Batteries

Magnesium–sulfur (Mg–S) batteries represent a very promising emerging cell chemistry. However, developments in Mg–S batteries are in an early stage, and the system exhibits problems similar to those of early lithium–sulfur (Li–S) batteries. The significant challenges are the low Coulombic efficiency...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials 2020-09, Vol.3 (9), p.8457-8474
Main Authors: Richter, Raphael, Häcker, Joachim, Zhao-Karger, Zhirong, Danner, Timo, Wagner, Norbert, Fichtner, Maximilian, Friedrich, K. Andreas, Latz, Arnulf
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a314t-a7e648cdd587076c4c29cf3e1cd846a4e8d7614b7e5ba1d80c7919cd02366b3a3
cites cdi_FETCH-LOGICAL-a314t-a7e648cdd587076c4c29cf3e1cd846a4e8d7614b7e5ba1d80c7919cd02366b3a3
container_end_page 8474
container_issue 9
container_start_page 8457
container_title ACS applied energy materials
container_volume 3
creator Richter, Raphael
Häcker, Joachim
Zhao-Karger, Zhirong
Danner, Timo
Wagner, Norbert
Fichtner, Maximilian
Friedrich, K. Andreas
Latz, Arnulf
description Magnesium–sulfur (Mg–S) batteries represent a very promising emerging cell chemistry. However, developments in Mg–S batteries are in an early stage, and the system exhibits problems similar to those of early lithium–sulfur (Li–S) batteries. The significant challenges are the low Coulombic efficiency and short cycle life of Mg–S batteries, mainly associated with the well-known polysulfide shuttle. An obvious result of this phenomenon is the rapid self-discharge of Mg–S batteries. In this article, we present a multiscale simulation framework for metal–sulfur batteries. In our approach, we provide a continuum description of chemical and electrochemical processes at the positive and negative electrodes. In combination with a one-dimensional (1D) model for the transport of dissolved species in the electrolyte, this approach allows us to reproduce and interpret experimental data measured on Li–S and Mg–S batteries. We focus on the common properties of Li–S and Mg–S batteries as well as on the key differences causing the much more rapid self-discharge of the Mg system. We identify side reactions on the anode surface as a limiting process, while other factors, such as the mobility of dissolved species and solid-phase kinetics, play a minor role.
doi_str_mv 10.1021/acsaem.0c01114
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsaem_0c01114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a209673717</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-a7e648cdd587076c4c29cf3e1cd846a4e8d7614b7e5ba1d80c7919cd02366b3a3</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EElXpyuwZKcUvce14hAKlooihMEcvtpO4ShNkOwMb_4F_yC-hKB1YmO7pdPd0-gi5BDYHlsI16oB2P2eaAQA_IZN0IXnClEhP_9znZBbCjjEGCkSq1IQ8rbvg6iYG6rrY061tq-TOBd2gry3tK7pxsXHD_vvzi2Jn6DPWnQ2jsR3aavD0FmO03tlwQc4qbIOdHXVK3h7uX5ePyeZltV7ebBLMgMcEpRU818Yscsmk0FynSleZBW1yLpDb3EgBvJR2USKYnGmpQGnD0kyIMsNsSubjX-37ELytinfv9ug_CmDFL41ipFEcaRwKV2Ph4Be7fvDdYd5_4R97FWPN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into Self-Discharge of Lithium– and Magnesium–Sulfur Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Richter, Raphael ; Häcker, Joachim ; Zhao-Karger, Zhirong ; Danner, Timo ; Wagner, Norbert ; Fichtner, Maximilian ; Friedrich, K. Andreas ; Latz, Arnulf</creator><creatorcontrib>Richter, Raphael ; Häcker, Joachim ; Zhao-Karger, Zhirong ; Danner, Timo ; Wagner, Norbert ; Fichtner, Maximilian ; Friedrich, K. Andreas ; Latz, Arnulf</creatorcontrib><description>Magnesium–sulfur (Mg–S) batteries represent a very promising emerging cell chemistry. However, developments in Mg–S batteries are in an early stage, and the system exhibits problems similar to those of early lithium–sulfur (Li–S) batteries. The significant challenges are the low Coulombic efficiency and short cycle life of Mg–S batteries, mainly associated with the well-known polysulfide shuttle. An obvious result of this phenomenon is the rapid self-discharge of Mg–S batteries. In this article, we present a multiscale simulation framework for metal–sulfur batteries. In our approach, we provide a continuum description of chemical and electrochemical processes at the positive and negative electrodes. In combination with a one-dimensional (1D) model for the transport of dissolved species in the electrolyte, this approach allows us to reproduce and interpret experimental data measured on Li–S and Mg–S batteries. We focus on the common properties of Li–S and Mg–S batteries as well as on the key differences causing the much more rapid self-discharge of the Mg system. We identify side reactions on the anode surface as a limiting process, while other factors, such as the mobility of dissolved species and solid-phase kinetics, play a minor role.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.0c01114</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2020-09, Vol.3 (9), p.8457-8474</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-a7e648cdd587076c4c29cf3e1cd846a4e8d7614b7e5ba1d80c7919cd02366b3a3</citedby><cites>FETCH-LOGICAL-a314t-a7e648cdd587076c4c29cf3e1cd846a4e8d7614b7e5ba1d80c7919cd02366b3a3</cites><orcidid>0000-0001-7061-7039 ; 0000-0002-7233-9818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Richter, Raphael</creatorcontrib><creatorcontrib>Häcker, Joachim</creatorcontrib><creatorcontrib>Zhao-Karger, Zhirong</creatorcontrib><creatorcontrib>Danner, Timo</creatorcontrib><creatorcontrib>Wagner, Norbert</creatorcontrib><creatorcontrib>Fichtner, Maximilian</creatorcontrib><creatorcontrib>Friedrich, K. Andreas</creatorcontrib><creatorcontrib>Latz, Arnulf</creatorcontrib><title>Insights into Self-Discharge of Lithium– and Magnesium–Sulfur Batteries</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Magnesium–sulfur (Mg–S) batteries represent a very promising emerging cell chemistry. However, developments in Mg–S batteries are in an early stage, and the system exhibits problems similar to those of early lithium–sulfur (Li–S) batteries. The significant challenges are the low Coulombic efficiency and short cycle life of Mg–S batteries, mainly associated with the well-known polysulfide shuttle. An obvious result of this phenomenon is the rapid self-discharge of Mg–S batteries. In this article, we present a multiscale simulation framework for metal–sulfur batteries. In our approach, we provide a continuum description of chemical and electrochemical processes at the positive and negative electrodes. In combination with a one-dimensional (1D) model for the transport of dissolved species in the electrolyte, this approach allows us to reproduce and interpret experimental data measured on Li–S and Mg–S batteries. We focus on the common properties of Li–S and Mg–S batteries as well as on the key differences causing the much more rapid self-discharge of the Mg system. We identify side reactions on the anode surface as a limiting process, while other factors, such as the mobility of dissolved species and solid-phase kinetics, play a minor role.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EElXpyuwZKcUvce14hAKlooihMEcvtpO4ShNkOwMb_4F_yC-hKB1YmO7pdPd0-gi5BDYHlsI16oB2P2eaAQA_IZN0IXnClEhP_9znZBbCjjEGCkSq1IQ8rbvg6iYG6rrY061tq-TOBd2gry3tK7pxsXHD_vvzi2Jn6DPWnQ2jsR3aavD0FmO03tlwQc4qbIOdHXVK3h7uX5ePyeZltV7ebBLMgMcEpRU818Yscsmk0FynSleZBW1yLpDb3EgBvJR2USKYnGmpQGnD0kyIMsNsSubjX-37ELytinfv9ug_CmDFL41ipFEcaRwKV2Ph4Be7fvDdYd5_4R97FWPN</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Richter, Raphael</creator><creator>Häcker, Joachim</creator><creator>Zhao-Karger, Zhirong</creator><creator>Danner, Timo</creator><creator>Wagner, Norbert</creator><creator>Fichtner, Maximilian</creator><creator>Friedrich, K. Andreas</creator><creator>Latz, Arnulf</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7061-7039</orcidid><orcidid>https://orcid.org/0000-0002-7233-9818</orcidid></search><sort><creationdate>20200928</creationdate><title>Insights into Self-Discharge of Lithium– and Magnesium–Sulfur Batteries</title><author>Richter, Raphael ; Häcker, Joachim ; Zhao-Karger, Zhirong ; Danner, Timo ; Wagner, Norbert ; Fichtner, Maximilian ; Friedrich, K. Andreas ; Latz, Arnulf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-a7e648cdd587076c4c29cf3e1cd846a4e8d7614b7e5ba1d80c7919cd02366b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Raphael</creatorcontrib><creatorcontrib>Häcker, Joachim</creatorcontrib><creatorcontrib>Zhao-Karger, Zhirong</creatorcontrib><creatorcontrib>Danner, Timo</creatorcontrib><creatorcontrib>Wagner, Norbert</creatorcontrib><creatorcontrib>Fichtner, Maximilian</creatorcontrib><creatorcontrib>Friedrich, K. Andreas</creatorcontrib><creatorcontrib>Latz, Arnulf</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Raphael</au><au>Häcker, Joachim</au><au>Zhao-Karger, Zhirong</au><au>Danner, Timo</au><au>Wagner, Norbert</au><au>Fichtner, Maximilian</au><au>Friedrich, K. Andreas</au><au>Latz, Arnulf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into Self-Discharge of Lithium– and Magnesium–Sulfur Batteries</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2020-09-28</date><risdate>2020</risdate><volume>3</volume><issue>9</issue><spage>8457</spage><epage>8474</epage><pages>8457-8474</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Magnesium–sulfur (Mg–S) batteries represent a very promising emerging cell chemistry. However, developments in Mg–S batteries are in an early stage, and the system exhibits problems similar to those of early lithium–sulfur (Li–S) batteries. The significant challenges are the low Coulombic efficiency and short cycle life of Mg–S batteries, mainly associated with the well-known polysulfide shuttle. An obvious result of this phenomenon is the rapid self-discharge of Mg–S batteries. In this article, we present a multiscale simulation framework for metal–sulfur batteries. In our approach, we provide a continuum description of chemical and electrochemical processes at the positive and negative electrodes. In combination with a one-dimensional (1D) model for the transport of dissolved species in the electrolyte, this approach allows us to reproduce and interpret experimental data measured on Li–S and Mg–S batteries. We focus on the common properties of Li–S and Mg–S batteries as well as on the key differences causing the much more rapid self-discharge of the Mg system. We identify side reactions on the anode surface as a limiting process, while other factors, such as the mobility of dissolved species and solid-phase kinetics, play a minor role.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.0c01114</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7061-7039</orcidid><orcidid>https://orcid.org/0000-0002-7233-9818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2020-09, Vol.3 (9), p.8457-8474
issn 2574-0962
2574-0962
language eng
recordid cdi_crossref_primary_10_1021_acsaem_0c01114
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Insights into Self-Discharge of Lithium– and Magnesium–Sulfur Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20Self-Discharge%20of%20Lithium%E2%80%93%20and%20Magnesium%E2%80%93Sulfur%20Batteries&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Richter,%20Raphael&rft.date=2020-09-28&rft.volume=3&rft.issue=9&rft.spage=8457&rft.epage=8474&rft.pages=8457-8474&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.0c01114&rft_dat=%3Cacs_cross%3Ea209673717%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a314t-a7e648cdd587076c4c29cf3e1cd846a4e8d7614b7e5ba1d80c7919cd02366b3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true