Loading…
Controllable Design of Polypyrrole-Iron Oxide Nanocoral Architectures for Supercapacitors with Ultrahigh Cycling Stability
Polypyrrole-modified iron oxide nanomaterials have been synthesized employing a one-step hydrothermal protocol. The influence of the reaction temperature has been investigated by performing the synthesis at four different temperatures (Ppy@Fe2O3-120 °C, Ppy@Fe2O3-140 °C, Ppy@Fe2O3-160 °C, and Ppy@Fe...
Saved in:
Published in: | ACS applied energy materials 2019-03, Vol.2 (3), p.2161-2168 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polypyrrole-modified iron oxide nanomaterials have been synthesized employing a one-step hydrothermal protocol. The influence of the reaction temperature has been investigated by performing the synthesis at four different temperatures (Ppy@Fe2O3-120 °C, Ppy@Fe2O3-140 °C, Ppy@Fe2O3-160 °C, and Ppy@Fe2O3-180 °C). Synthesized materials exhibited an unprecedentedly peculiar morphology (star/coral reef-like architectures), induced by the presence of pyrrole in the reaction media. Full characterization of the samples revealed the critical influence of temperature on the crystallinity, textural properties and specially on (C+N)/Fe surface ratios in the materials. As-synthesized nanohybrids were integrated into electrodes to construct supercapacitor devices. A effective tuning of the electrochemical features was achieved by controlling the (C+N)/Fe ratio on the surface, strongly dependent on reaction temperature. The best electrochemical performance was reached by Ppy@Fe2O3-180 °C nanohybrid, which exhibited a remarkable capacitance value of 560 F g–1 at a current density of 5 A g–1 and an outstanding cycling stability of ca. 97.3% after 20 000 cycles of charge–discharge at 40A g–1 was reached. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.8b02167 |