Loading…

Operation Mechanism in Hybrid Mg-Li Batteries with TiNb 2 O 7 Allowing Stable High-Rate Cycling

We studied the structural evolution and cycling behavior of TiNb O (TNO) as a cathode in a nonaqueous hybrid dual-salt Mg-Li battery. A very high fraction of pseudocapacitive contribution to the overall specific capacity makes the material suitable for ultrafast operation in a hybrid battery, compos...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-02, Vol.13 (5), p.6309-6321
Main Authors: Maletti, Sebastian, Janson, Oleg, Herzog-Arbeitman, Abraham, Gonzalez Martinez, Ignacio Guillermo, Buckan, Ronny, Fischer, Johanna, Senyshyn, Anatoliy, Missyul, Alexander, Etter, Martin, Mikhailova, Daria
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1079-b57c19bab8158b8d056a250436de02a3bbb4537efeb8d2b21fc537bfb8344613
cites cdi_FETCH-LOGICAL-c1079-b57c19bab8158b8d056a250436de02a3bbb4537efeb8d2b21fc537bfb8344613
container_end_page 6321
container_issue 5
container_start_page 6309
container_title ACS applied materials & interfaces
container_volume 13
creator Maletti, Sebastian
Janson, Oleg
Herzog-Arbeitman, Abraham
Gonzalez Martinez, Ignacio Guillermo
Buckan, Ronny
Fischer, Johanna
Senyshyn, Anatoliy
Missyul, Alexander
Etter, Martin
Mikhailova, Daria
description We studied the structural evolution and cycling behavior of TiNb O (TNO) as a cathode in a nonaqueous hybrid dual-salt Mg-Li battery. A very high fraction of pseudocapacitive contribution to the overall specific capacity makes the material suitable for ultrafast operation in a hybrid battery, composed of a Mg-metal anode, and a dual-salt APC-LiCl electrolyte with Li and Mg cations. Theoretical calculations show that Li intercalation is predominant over Mg intercalation into the TNO in a dual-salt electrolyte with Mg and Li , while experimentally up to 20% Mg cointercalation was observed after battery discharge. In hybrid Mg-Li batteries, TNO shows capacities which are about 40 mA h g lower than in single-ion Li batteries at current densities of up to 1.2 A g . This is likely due to a partial Mg cointercalation or/and location of Li cations on alternative crystallographic sites in the TNO structure in comparison to the Li-intercalation process in Li batteries. Generally, hybrid Mg-Li cells show a markedly superior applicability for a very prolonged operation (above 1000 cycles) with 100% Coulombic efficiency and a capacity retention higher than 95% in comparison to conventional Li batteries with TNO after being cycled either under a low (7.75 mA g ) or high (1.55 A g ) current density. The better long-term behavior of the hybrid Mg-Li batteries with TNO is especially pronounced at 60 °C. The reasons for this are an appropriate cathode electrolyte interface containing MgCl species and a superior performance of the Mg anode in APC-LiCl electrolytes with a dendrite-free, fast Mg deposition/stripping. This stable interface stands in contrast to the anode electrolyte interface in Li batteries with a Li anode in conventional carbonate-containing electrolytes, which is prone to dendrite formation, thus leading to a battery shortcut.
doi_str_mv 10.1021/acsami.0c20905
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_0c20905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33527829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1079-b57c19bab8158b8d056a250436de02a3bbb4537efeb8d2b21fc537bfb8344613</originalsourceid><addsrcrecordid>eNo9kMtOwkAUhidGI4huXZrzAq1z7WWJRMQEbKLsmznTKYxpC5mpIby9NSCr85_8l8VHyCOjMaOcPWsTdOtiajjNqboiY5ZLGWVc8euLlnJE7kL4pjQRnKpbMhJC8TTj-ZiUxd563btdBytrtrpzoQXXweKI3lWw2kRLBy-67613NsDB9VtYuw8EDgWkMG2a3cF1G_jqNTYWFm6zjT51b2F2NM1g3JObWjfBPpzvhKznr-vZIloWb--z6TIyjKZ5hCo1LEeNGVMZZhVVieaKSpFUlnItEFEqkdraDiZHzmozvFhjJqRMmJiQ-DRr_C4Eb-ty712r_bFktPwDVZ5AlWdQQ-HpVNj_YGurS_yfjPgFYO5j9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Operation Mechanism in Hybrid Mg-Li Batteries with TiNb 2 O 7 Allowing Stable High-Rate Cycling</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Maletti, Sebastian ; Janson, Oleg ; Herzog-Arbeitman, Abraham ; Gonzalez Martinez, Ignacio Guillermo ; Buckan, Ronny ; Fischer, Johanna ; Senyshyn, Anatoliy ; Missyul, Alexander ; Etter, Martin ; Mikhailova, Daria</creator><creatorcontrib>Maletti, Sebastian ; Janson, Oleg ; Herzog-Arbeitman, Abraham ; Gonzalez Martinez, Ignacio Guillermo ; Buckan, Ronny ; Fischer, Johanna ; Senyshyn, Anatoliy ; Missyul, Alexander ; Etter, Martin ; Mikhailova, Daria</creatorcontrib><description>We studied the structural evolution and cycling behavior of TiNb O (TNO) as a cathode in a nonaqueous hybrid dual-salt Mg-Li battery. A very high fraction of pseudocapacitive contribution to the overall specific capacity makes the material suitable for ultrafast operation in a hybrid battery, composed of a Mg-metal anode, and a dual-salt APC-LiCl electrolyte with Li and Mg cations. Theoretical calculations show that Li intercalation is predominant over Mg intercalation into the TNO in a dual-salt electrolyte with Mg and Li , while experimentally up to 20% Mg cointercalation was observed after battery discharge. In hybrid Mg-Li batteries, TNO shows capacities which are about 40 mA h g lower than in single-ion Li batteries at current densities of up to 1.2 A g . This is likely due to a partial Mg cointercalation or/and location of Li cations on alternative crystallographic sites in the TNO structure in comparison to the Li-intercalation process in Li batteries. Generally, hybrid Mg-Li cells show a markedly superior applicability for a very prolonged operation (above 1000 cycles) with 100% Coulombic efficiency and a capacity retention higher than 95% in comparison to conventional Li batteries with TNO after being cycled either under a low (7.75 mA g ) or high (1.55 A g ) current density. The better long-term behavior of the hybrid Mg-Li batteries with TNO is especially pronounced at 60 °C. The reasons for this are an appropriate cathode electrolyte interface containing MgCl species and a superior performance of the Mg anode in APC-LiCl electrolytes with a dendrite-free, fast Mg deposition/stripping. This stable interface stands in contrast to the anode electrolyte interface in Li batteries with a Li anode in conventional carbonate-containing electrolytes, which is prone to dendrite formation, thus leading to a battery shortcut.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c20905</identifier><identifier>PMID: 33527829</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2021-02, Vol.13 (5), p.6309-6321</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1079-b57c19bab8158b8d056a250436de02a3bbb4537efeb8d2b21fc537bfb8344613</citedby><cites>FETCH-LOGICAL-c1079-b57c19bab8158b8d056a250436de02a3bbb4537efeb8d2b21fc537bfb8344613</cites><orcidid>0000-0002-8197-1807 ; 0000-0001-6238-7413 ; 0000-0002-0577-4481 ; 0000-0001-5308-658X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33527829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maletti, Sebastian</creatorcontrib><creatorcontrib>Janson, Oleg</creatorcontrib><creatorcontrib>Herzog-Arbeitman, Abraham</creatorcontrib><creatorcontrib>Gonzalez Martinez, Ignacio Guillermo</creatorcontrib><creatorcontrib>Buckan, Ronny</creatorcontrib><creatorcontrib>Fischer, Johanna</creatorcontrib><creatorcontrib>Senyshyn, Anatoliy</creatorcontrib><creatorcontrib>Missyul, Alexander</creatorcontrib><creatorcontrib>Etter, Martin</creatorcontrib><creatorcontrib>Mikhailova, Daria</creatorcontrib><title>Operation Mechanism in Hybrid Mg-Li Batteries with TiNb 2 O 7 Allowing Stable High-Rate Cycling</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>We studied the structural evolution and cycling behavior of TiNb O (TNO) as a cathode in a nonaqueous hybrid dual-salt Mg-Li battery. A very high fraction of pseudocapacitive contribution to the overall specific capacity makes the material suitable for ultrafast operation in a hybrid battery, composed of a Mg-metal anode, and a dual-salt APC-LiCl electrolyte with Li and Mg cations. Theoretical calculations show that Li intercalation is predominant over Mg intercalation into the TNO in a dual-salt electrolyte with Mg and Li , while experimentally up to 20% Mg cointercalation was observed after battery discharge. In hybrid Mg-Li batteries, TNO shows capacities which are about 40 mA h g lower than in single-ion Li batteries at current densities of up to 1.2 A g . This is likely due to a partial Mg cointercalation or/and location of Li cations on alternative crystallographic sites in the TNO structure in comparison to the Li-intercalation process in Li batteries. Generally, hybrid Mg-Li cells show a markedly superior applicability for a very prolonged operation (above 1000 cycles) with 100% Coulombic efficiency and a capacity retention higher than 95% in comparison to conventional Li batteries with TNO after being cycled either under a low (7.75 mA g ) or high (1.55 A g ) current density. The better long-term behavior of the hybrid Mg-Li batteries with TNO is especially pronounced at 60 °C. The reasons for this are an appropriate cathode electrolyte interface containing MgCl species and a superior performance of the Mg anode in APC-LiCl electrolytes with a dendrite-free, fast Mg deposition/stripping. This stable interface stands in contrast to the anode electrolyte interface in Li batteries with a Li anode in conventional carbonate-containing electrolytes, which is prone to dendrite formation, thus leading to a battery shortcut.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwkAUhidGI4huXZrzAq1z7WWJRMQEbKLsmznTKYxpC5mpIby9NSCr85_8l8VHyCOjMaOcPWsTdOtiajjNqboiY5ZLGWVc8euLlnJE7kL4pjQRnKpbMhJC8TTj-ZiUxd563btdBytrtrpzoQXXweKI3lWw2kRLBy-67613NsDB9VtYuw8EDgWkMG2a3cF1G_jqNTYWFm6zjT51b2F2NM1g3JObWjfBPpzvhKznr-vZIloWb--z6TIyjKZ5hCo1LEeNGVMZZhVVieaKSpFUlnItEFEqkdraDiZHzmozvFhjJqRMmJiQ-DRr_C4Eb-ty712r_bFktPwDVZ5AlWdQQ-HpVNj_YGurS_yfjPgFYO5j9A</recordid><startdate>20210210</startdate><enddate>20210210</enddate><creator>Maletti, Sebastian</creator><creator>Janson, Oleg</creator><creator>Herzog-Arbeitman, Abraham</creator><creator>Gonzalez Martinez, Ignacio Guillermo</creator><creator>Buckan, Ronny</creator><creator>Fischer, Johanna</creator><creator>Senyshyn, Anatoliy</creator><creator>Missyul, Alexander</creator><creator>Etter, Martin</creator><creator>Mikhailova, Daria</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8197-1807</orcidid><orcidid>https://orcid.org/0000-0001-6238-7413</orcidid><orcidid>https://orcid.org/0000-0002-0577-4481</orcidid><orcidid>https://orcid.org/0000-0001-5308-658X</orcidid></search><sort><creationdate>20210210</creationdate><title>Operation Mechanism in Hybrid Mg-Li Batteries with TiNb 2 O 7 Allowing Stable High-Rate Cycling</title><author>Maletti, Sebastian ; Janson, Oleg ; Herzog-Arbeitman, Abraham ; Gonzalez Martinez, Ignacio Guillermo ; Buckan, Ronny ; Fischer, Johanna ; Senyshyn, Anatoliy ; Missyul, Alexander ; Etter, Martin ; Mikhailova, Daria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1079-b57c19bab8158b8d056a250436de02a3bbb4537efeb8d2b21fc537bfb8344613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maletti, Sebastian</creatorcontrib><creatorcontrib>Janson, Oleg</creatorcontrib><creatorcontrib>Herzog-Arbeitman, Abraham</creatorcontrib><creatorcontrib>Gonzalez Martinez, Ignacio Guillermo</creatorcontrib><creatorcontrib>Buckan, Ronny</creatorcontrib><creatorcontrib>Fischer, Johanna</creatorcontrib><creatorcontrib>Senyshyn, Anatoliy</creatorcontrib><creatorcontrib>Missyul, Alexander</creatorcontrib><creatorcontrib>Etter, Martin</creatorcontrib><creatorcontrib>Mikhailova, Daria</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maletti, Sebastian</au><au>Janson, Oleg</au><au>Herzog-Arbeitman, Abraham</au><au>Gonzalez Martinez, Ignacio Guillermo</au><au>Buckan, Ronny</au><au>Fischer, Johanna</au><au>Senyshyn, Anatoliy</au><au>Missyul, Alexander</au><au>Etter, Martin</au><au>Mikhailova, Daria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operation Mechanism in Hybrid Mg-Li Batteries with TiNb 2 O 7 Allowing Stable High-Rate Cycling</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2021-02-10</date><risdate>2021</risdate><volume>13</volume><issue>5</issue><spage>6309</spage><epage>6321</epage><pages>6309-6321</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We studied the structural evolution and cycling behavior of TiNb O (TNO) as a cathode in a nonaqueous hybrid dual-salt Mg-Li battery. A very high fraction of pseudocapacitive contribution to the overall specific capacity makes the material suitable for ultrafast operation in a hybrid battery, composed of a Mg-metal anode, and a dual-salt APC-LiCl electrolyte with Li and Mg cations. Theoretical calculations show that Li intercalation is predominant over Mg intercalation into the TNO in a dual-salt electrolyte with Mg and Li , while experimentally up to 20% Mg cointercalation was observed after battery discharge. In hybrid Mg-Li batteries, TNO shows capacities which are about 40 mA h g lower than in single-ion Li batteries at current densities of up to 1.2 A g . This is likely due to a partial Mg cointercalation or/and location of Li cations on alternative crystallographic sites in the TNO structure in comparison to the Li-intercalation process in Li batteries. Generally, hybrid Mg-Li cells show a markedly superior applicability for a very prolonged operation (above 1000 cycles) with 100% Coulombic efficiency and a capacity retention higher than 95% in comparison to conventional Li batteries with TNO after being cycled either under a low (7.75 mA g ) or high (1.55 A g ) current density. The better long-term behavior of the hybrid Mg-Li batteries with TNO is especially pronounced at 60 °C. The reasons for this are an appropriate cathode electrolyte interface containing MgCl species and a superior performance of the Mg anode in APC-LiCl electrolytes with a dendrite-free, fast Mg deposition/stripping. This stable interface stands in contrast to the anode electrolyte interface in Li batteries with a Li anode in conventional carbonate-containing electrolytes, which is prone to dendrite formation, thus leading to a battery shortcut.</abstract><cop>United States</cop><pmid>33527829</pmid><doi>10.1021/acsami.0c20905</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8197-1807</orcidid><orcidid>https://orcid.org/0000-0001-6238-7413</orcidid><orcidid>https://orcid.org/0000-0002-0577-4481</orcidid><orcidid>https://orcid.org/0000-0001-5308-658X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-02, Vol.13 (5), p.6309-6321
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_0c20905
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Operation Mechanism in Hybrid Mg-Li Batteries with TiNb 2 O 7 Allowing Stable High-Rate Cycling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operation%20Mechanism%20in%20Hybrid%20Mg-Li%20Batteries%20with%20TiNb%202%20O%207%20Allowing%20Stable%20High-Rate%20Cycling&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Maletti,%20Sebastian&rft.date=2021-02-10&rft.volume=13&rft.issue=5&rft.spage=6309&rft.epage=6321&rft.pages=6309-6321&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c20905&rft_dat=%3Cpubmed_cross%3E33527829%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1079-b57c19bab8158b8d056a250436de02a3bbb4537efeb8d2b21fc537bfb8344613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33527829&rfr_iscdi=true