Loading…
Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures
Focused electron beam-induced deposition (FEBID) and focused ion beam-induced deposition (FIBID) are direct-write fabrication techniques that use focused beams of charged particles (electrons or ions) to create 3D metal-containing nanostructures by decomposing organometallic precursors onto substrat...
Saved in:
Published in: | ACS applied materials & interfaces 2021-10, Vol.13 (41), p.48333-48348 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Focused electron beam-induced deposition (FEBID) and focused ion beam-induced deposition (FIBID) are direct-write fabrication techniques that use focused beams of charged particles (electrons or ions) to create 3D metal-containing nanostructures by decomposing organometallic precursors onto substrates in a low-pressure environment. For many applications, it is important to minimize contamination of these nanostructures by impurities from incomplete ligand dissociation and desorption. This spotlight on applications describes the use of ultra high vacuum surface science studies to obtain mechanistic information on electron- and ion-induced processes in organometallic precursor candidates. The results are used for the mechanism-based design of custom precursors for FEBID and FIBID. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c12327 |