Loading…
Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c > 77 K
Identifying new superconductors with high transition temperatures (T c > 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involvi...
Saved in:
Published in: | ACS applied materials & interfaces 2023-06, Vol.15 (25), p.30029-30038 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13 |
---|---|
cites | cdi_FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13 |
container_end_page | 30038 |
container_issue | 25 |
container_start_page | 30029 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Zhong, Chengquan Zhang, Jingzi Lu, Xiaoting Zhang, Ke Liu, Jiakai Hu, Kailong Chen, Junjie Lin, Xi |
description | Identifying new superconductors with high transition temperatures (T c > 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involving many-body physics, doping chemistry and materials, and defect structures. In this study, we propose a deep generative model that combines two widely used machine learning algorithms, namely, the variational auto-encoder (VAE) and the generative adversarial network (GAN), to systematically generate unknown superconductors under the given high T c condition. After training, we successfully identified the distribution of the representative hyperspace of superconductors with different T c, in which many superconductor constituent elements were found adjacent to each other with their neighbors in the periodic table. Equipped with the conditional distribution of T c, our deep generative model predicted hundreds of superconductors with T c > 77 K, as predicted by the published T c prediction models in the literature. For the copper-based superconductors, our results reproduced the variation in Tc as a function of the Cu concentration and predicted an optimal T c = 129.4 K, when the Cu concentration reached 2.41 in Hg0.37Ba1.73Ca1.18Cu2.41O6.93Tl0.69. We expect that such an inverse design model and comprehensive list of potential high Tc superconductors would greatly facilitate future research activities in superconductors. |
doi_str_mv | 10.1021/acsami.3c00593 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c00593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c984264139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK1uXcqshdR55rERpNW2WFGwrkMyudNOaTJhJqn4701J7c7VPYvvO1wOQreUjClh9CFTPivNmCtCZMLP0JAmQgQxk-z8lIUYoCvvt4SEnBF5iQY84ozJhA6RmwLUeAYVuKwxe8BvtoAd1tbhRbUH5wFPwZt1ha3Gc7PeBCso6wPcOsCfbReVrYpWNZ0xsWVtvWmMrTz-Ns0GfzgojGqgwCus8COOIvx6jS50tvNwc7wj9PXyvJrMg-X7bDF5WgYZY1ET8ExJKkIOUiudhELFVGgiRawpZ1LlXPAYcq1DLSOeJyJjCdVc5IzTgoiC8hEa973KWe8d6LR2pszcT0pJehgv7cdLj-N1wl0v1G1eQnHC_9bqgPse6MR0a1tXdf__1_YL66x5kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c > 77 K</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhong, Chengquan ; Zhang, Jingzi ; Lu, Xiaoting ; Zhang, Ke ; Liu, Jiakai ; Hu, Kailong ; Chen, Junjie ; Lin, Xi</creator><creatorcontrib>Zhong, Chengquan ; Zhang, Jingzi ; Lu, Xiaoting ; Zhang, Ke ; Liu, Jiakai ; Hu, Kailong ; Chen, Junjie ; Lin, Xi</creatorcontrib><description>Identifying new superconductors with high transition temperatures (T c > 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involving many-body physics, doping chemistry and materials, and defect structures. In this study, we propose a deep generative model that combines two widely used machine learning algorithms, namely, the variational auto-encoder (VAE) and the generative adversarial network (GAN), to systematically generate unknown superconductors under the given high T c condition. After training, we successfully identified the distribution of the representative hyperspace of superconductors with different T c, in which many superconductor constituent elements were found adjacent to each other with their neighbors in the periodic table. Equipped with the conditional distribution of T c, our deep generative model predicted hundreds of superconductors with T c > 77 K, as predicted by the published T c prediction models in the literature. For the copper-based superconductors, our results reproduced the variation in Tc as a function of the Cu concentration and predicted an optimal T c = 129.4 K, when the Cu concentration reached 2.41 in Hg0.37Ba1.73Ca1.18Cu2.41O6.93Tl0.69. We expect that such an inverse design model and comprehensive list of potential high Tc superconductors would greatly facilitate future research activities in superconductors.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c00593</identifier><identifier>PMID: 37322591</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2023-06, Vol.15 (25), p.30029-30038</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13</citedby><cites>FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13</cites><orcidid>0000-0001-7409-3367 ; 0000-0003-0489-5836 ; 0000-0003-3937-0570 ; 0000-0001-6224-6717 ; 0000-0003-2649-1971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37322591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Chengquan</creatorcontrib><creatorcontrib>Zhang, Jingzi</creatorcontrib><creatorcontrib>Lu, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Liu, Jiakai</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><title>Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c > 77 K</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Identifying new superconductors with high transition temperatures (T c > 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involving many-body physics, doping chemistry and materials, and defect structures. In this study, we propose a deep generative model that combines two widely used machine learning algorithms, namely, the variational auto-encoder (VAE) and the generative adversarial network (GAN), to systematically generate unknown superconductors under the given high T c condition. After training, we successfully identified the distribution of the representative hyperspace of superconductors with different T c, in which many superconductor constituent elements were found adjacent to each other with their neighbors in the periodic table. Equipped with the conditional distribution of T c, our deep generative model predicted hundreds of superconductors with T c > 77 K, as predicted by the published T c prediction models in the literature. For the copper-based superconductors, our results reproduced the variation in Tc as a function of the Cu concentration and predicted an optimal T c = 129.4 K, when the Cu concentration reached 2.41 in Hg0.37Ba1.73Ca1.18Cu2.41O6.93Tl0.69. We expect that such an inverse design model and comprehensive list of potential high Tc superconductors would greatly facilitate future research activities in superconductors.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRbK1uXcqshdR55rERpNW2WFGwrkMyudNOaTJhJqn4701J7c7VPYvvO1wOQreUjClh9CFTPivNmCtCZMLP0JAmQgQxk-z8lIUYoCvvt4SEnBF5iQY84ozJhA6RmwLUeAYVuKwxe8BvtoAd1tbhRbUH5wFPwZt1ha3Gc7PeBCso6wPcOsCfbReVrYpWNZ0xsWVtvWmMrTz-Ns0GfzgojGqgwCus8COOIvx6jS50tvNwc7wj9PXyvJrMg-X7bDF5WgYZY1ET8ExJKkIOUiudhELFVGgiRawpZ1LlXPAYcq1DLSOeJyJjCdVc5IzTgoiC8hEa973KWe8d6LR2pszcT0pJehgv7cdLj-N1wl0v1G1eQnHC_9bqgPse6MR0a1tXdf__1_YL66x5kw</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Zhong, Chengquan</creator><creator>Zhang, Jingzi</creator><creator>Lu, Xiaoting</creator><creator>Zhang, Ke</creator><creator>Liu, Jiakai</creator><creator>Hu, Kailong</creator><creator>Chen, Junjie</creator><creator>Lin, Xi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7409-3367</orcidid><orcidid>https://orcid.org/0000-0003-0489-5836</orcidid><orcidid>https://orcid.org/0000-0003-3937-0570</orcidid><orcidid>https://orcid.org/0000-0001-6224-6717</orcidid><orcidid>https://orcid.org/0000-0003-2649-1971</orcidid></search><sort><creationdate>20230628</creationdate><title>Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c > 77 K</title><author>Zhong, Chengquan ; Zhang, Jingzi ; Lu, Xiaoting ; Zhang, Ke ; Liu, Jiakai ; Hu, Kailong ; Chen, Junjie ; Lin, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Chengquan</creatorcontrib><creatorcontrib>Zhang, Jingzi</creatorcontrib><creatorcontrib>Lu, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Liu, Jiakai</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Chengquan</au><au>Zhang, Jingzi</au><au>Lu, Xiaoting</au><au>Zhang, Ke</au><au>Liu, Jiakai</au><au>Hu, Kailong</au><au>Chen, Junjie</au><au>Lin, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c > 77 K</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-06-28</date><risdate>2023</risdate><volume>15</volume><issue>25</issue><spage>30029</spage><epage>30038</epage><pages>30029-30038</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Identifying new superconductors with high transition temperatures (T c > 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involving many-body physics, doping chemistry and materials, and defect structures. In this study, we propose a deep generative model that combines two widely used machine learning algorithms, namely, the variational auto-encoder (VAE) and the generative adversarial network (GAN), to systematically generate unknown superconductors under the given high T c condition. After training, we successfully identified the distribution of the representative hyperspace of superconductors with different T c, in which many superconductor constituent elements were found adjacent to each other with their neighbors in the periodic table. Equipped with the conditional distribution of T c, our deep generative model predicted hundreds of superconductors with T c > 77 K, as predicted by the published T c prediction models in the literature. For the copper-based superconductors, our results reproduced the variation in Tc as a function of the Cu concentration and predicted an optimal T c = 129.4 K, when the Cu concentration reached 2.41 in Hg0.37Ba1.73Ca1.18Cu2.41O6.93Tl0.69. We expect that such an inverse design model and comprehensive list of potential high Tc superconductors would greatly facilitate future research activities in superconductors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37322591</pmid><doi>10.1021/acsami.3c00593</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7409-3367</orcidid><orcidid>https://orcid.org/0000-0003-0489-5836</orcidid><orcidid>https://orcid.org/0000-0003-3937-0570</orcidid><orcidid>https://orcid.org/0000-0001-6224-6717</orcidid><orcidid>https://orcid.org/0000-0003-2649-1971</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-06, Vol.15 (25), p.30029-30038 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_3c00593 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Energy, Environmental, and Catalysis Applications |
title | Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c > 77 K |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T18%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Generative%20Model%20for%20Inverse%20Design%20of%20High-Temperature%20Superconductor%20Compositions%20with%20Predicted%20T%20c%20%3E%2077%20K&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhong,%20Chengquan&rft.date=2023-06-28&rft.volume=15&rft.issue=25&rft.spage=30029&rft.epage=30038&rft.pages=30029-30038&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c00593&rft_dat=%3Cacs_cross%3Ec984264139%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/37322591&rfr_iscdi=true |