Loading…

Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c > 77 K

Identifying new superconductors with high transition temperatures (T c > 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involvi...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-06, Vol.15 (25), p.30029-30038
Main Authors: Zhong, Chengquan, Zhang, Jingzi, Lu, Xiaoting, Zhang, Ke, Liu, Jiakai, Hu, Kailong, Chen, Junjie, Lin, Xi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13
cites cdi_FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13
container_end_page 30038
container_issue 25
container_start_page 30029
container_title ACS applied materials & interfaces
container_volume 15
creator Zhong, Chengquan
Zhang, Jingzi
Lu, Xiaoting
Zhang, Ke
Liu, Jiakai
Hu, Kailong
Chen, Junjie
Lin, Xi
description Identifying new superconductors with high transition temperatures (T c > 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involving many-body physics, doping chemistry and materials, and defect structures. In this study, we propose a deep generative model that combines two widely used machine learning algorithms, namely, the variational auto-encoder (VAE) and the generative adversarial network (GAN), to systematically generate unknown superconductors under the given high T c condition. After training, we successfully identified the distribution of the representative hyperspace of superconductors with different T c, in which many superconductor constituent elements were found adjacent to each other with their neighbors in the periodic table. Equipped with the conditional distribution of T c, our deep generative model predicted hundreds of superconductors with T c > 77 K, as predicted by the published T c prediction models in the literature. For the copper-based superconductors, our results reproduced the variation in Tc as a function of the Cu concentration and predicted an optimal T c = 129.4 K, when the Cu concentration reached 2.41 in Hg0.37Ba1.73Ca1.18Cu2.41O6.93Tl0.69. We expect that such an inverse design model and comprehensive list of potential high Tc superconductors would greatly facilitate future research activities in superconductors.
doi_str_mv 10.1021/acsami.3c00593
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c00593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c984264139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK1uXcqshdR55rERpNW2WFGwrkMyudNOaTJhJqn4701J7c7VPYvvO1wOQreUjClh9CFTPivNmCtCZMLP0JAmQgQxk-z8lIUYoCvvt4SEnBF5iQY84ozJhA6RmwLUeAYVuKwxe8BvtoAd1tbhRbUH5wFPwZt1ha3Gc7PeBCso6wPcOsCfbReVrYpWNZ0xsWVtvWmMrTz-Ns0GfzgojGqgwCus8COOIvx6jS50tvNwc7wj9PXyvJrMg-X7bDF5WgYZY1ET8ExJKkIOUiudhELFVGgiRawpZ1LlXPAYcq1DLSOeJyJjCdVc5IzTgoiC8hEa973KWe8d6LR2pszcT0pJehgv7cdLj-N1wl0v1G1eQnHC_9bqgPse6MR0a1tXdf__1_YL66x5kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c &gt; 77 K</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhong, Chengquan ; Zhang, Jingzi ; Lu, Xiaoting ; Zhang, Ke ; Liu, Jiakai ; Hu, Kailong ; Chen, Junjie ; Lin, Xi</creator><creatorcontrib>Zhong, Chengquan ; Zhang, Jingzi ; Lu, Xiaoting ; Zhang, Ke ; Liu, Jiakai ; Hu, Kailong ; Chen, Junjie ; Lin, Xi</creatorcontrib><description>Identifying new superconductors with high transition temperatures (T c &gt; 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involving many-body physics, doping chemistry and materials, and defect structures. In this study, we propose a deep generative model that combines two widely used machine learning algorithms, namely, the variational auto-encoder (VAE) and the generative adversarial network (GAN), to systematically generate unknown superconductors under the given high T c condition. After training, we successfully identified the distribution of the representative hyperspace of superconductors with different T c, in which many superconductor constituent elements were found adjacent to each other with their neighbors in the periodic table. Equipped with the conditional distribution of T c, our deep generative model predicted hundreds of superconductors with T c &gt; 77 K, as predicted by the published T c prediction models in the literature. For the copper-based superconductors, our results reproduced the variation in Tc as a function of the Cu concentration and predicted an optimal T c = 129.4 K, when the Cu concentration reached 2.41 in Hg0.37Ba1.73Ca1.18Cu2.41O6.93Tl0.69. We expect that such an inverse design model and comprehensive list of potential high Tc superconductors would greatly facilitate future research activities in superconductors.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c00593</identifier><identifier>PMID: 37322591</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-06, Vol.15 (25), p.30029-30038</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13</citedby><cites>FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13</cites><orcidid>0000-0001-7409-3367 ; 0000-0003-0489-5836 ; 0000-0003-3937-0570 ; 0000-0001-6224-6717 ; 0000-0003-2649-1971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37322591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Chengquan</creatorcontrib><creatorcontrib>Zhang, Jingzi</creatorcontrib><creatorcontrib>Lu, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Liu, Jiakai</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><title>Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c &gt; 77 K</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Identifying new superconductors with high transition temperatures (T c &gt; 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involving many-body physics, doping chemistry and materials, and defect structures. In this study, we propose a deep generative model that combines two widely used machine learning algorithms, namely, the variational auto-encoder (VAE) and the generative adversarial network (GAN), to systematically generate unknown superconductors under the given high T c condition. After training, we successfully identified the distribution of the representative hyperspace of superconductors with different T c, in which many superconductor constituent elements were found adjacent to each other with their neighbors in the periodic table. Equipped with the conditional distribution of T c, our deep generative model predicted hundreds of superconductors with T c &gt; 77 K, as predicted by the published T c prediction models in the literature. For the copper-based superconductors, our results reproduced the variation in Tc as a function of the Cu concentration and predicted an optimal T c = 129.4 K, when the Cu concentration reached 2.41 in Hg0.37Ba1.73Ca1.18Cu2.41O6.93Tl0.69. We expect that such an inverse design model and comprehensive list of potential high Tc superconductors would greatly facilitate future research activities in superconductors.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRbK1uXcqshdR55rERpNW2WFGwrkMyudNOaTJhJqn4701J7c7VPYvvO1wOQreUjClh9CFTPivNmCtCZMLP0JAmQgQxk-z8lIUYoCvvt4SEnBF5iQY84ozJhA6RmwLUeAYVuKwxe8BvtoAd1tbhRbUH5wFPwZt1ha3Gc7PeBCso6wPcOsCfbReVrYpWNZ0xsWVtvWmMrTz-Ns0GfzgojGqgwCus8COOIvx6jS50tvNwc7wj9PXyvJrMg-X7bDF5WgYZY1ET8ExJKkIOUiudhELFVGgiRawpZ1LlXPAYcq1DLSOeJyJjCdVc5IzTgoiC8hEa973KWe8d6LR2pszcT0pJehgv7cdLj-N1wl0v1G1eQnHC_9bqgPse6MR0a1tXdf__1_YL66x5kw</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Zhong, Chengquan</creator><creator>Zhang, Jingzi</creator><creator>Lu, Xiaoting</creator><creator>Zhang, Ke</creator><creator>Liu, Jiakai</creator><creator>Hu, Kailong</creator><creator>Chen, Junjie</creator><creator>Lin, Xi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7409-3367</orcidid><orcidid>https://orcid.org/0000-0003-0489-5836</orcidid><orcidid>https://orcid.org/0000-0003-3937-0570</orcidid><orcidid>https://orcid.org/0000-0001-6224-6717</orcidid><orcidid>https://orcid.org/0000-0003-2649-1971</orcidid></search><sort><creationdate>20230628</creationdate><title>Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c &gt; 77 K</title><author>Zhong, Chengquan ; Zhang, Jingzi ; Lu, Xiaoting ; Zhang, Ke ; Liu, Jiakai ; Hu, Kailong ; Chen, Junjie ; Lin, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Chengquan</creatorcontrib><creatorcontrib>Zhang, Jingzi</creatorcontrib><creatorcontrib>Lu, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Liu, Jiakai</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Chengquan</au><au>Zhang, Jingzi</au><au>Lu, Xiaoting</au><au>Zhang, Ke</au><au>Liu, Jiakai</au><au>Hu, Kailong</au><au>Chen, Junjie</au><au>Lin, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c &gt; 77 K</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-06-28</date><risdate>2023</risdate><volume>15</volume><issue>25</issue><spage>30029</spage><epage>30038</epage><pages>30029-30038</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Identifying new superconductors with high transition temperatures (T c &gt; 77 K) is a major goal in modern condensed matter physics. The inverse design of high T c superconductors relies heavily on an effective representation of the superconductor hyperspace due to the underlying complexity involving many-body physics, doping chemistry and materials, and defect structures. In this study, we propose a deep generative model that combines two widely used machine learning algorithms, namely, the variational auto-encoder (VAE) and the generative adversarial network (GAN), to systematically generate unknown superconductors under the given high T c condition. After training, we successfully identified the distribution of the representative hyperspace of superconductors with different T c, in which many superconductor constituent elements were found adjacent to each other with their neighbors in the periodic table. Equipped with the conditional distribution of T c, our deep generative model predicted hundreds of superconductors with T c &gt; 77 K, as predicted by the published T c prediction models in the literature. For the copper-based superconductors, our results reproduced the variation in Tc as a function of the Cu concentration and predicted an optimal T c = 129.4 K, when the Cu concentration reached 2.41 in Hg0.37Ba1.73Ca1.18Cu2.41O6.93Tl0.69. We expect that such an inverse design model and comprehensive list of potential high Tc superconductors would greatly facilitate future research activities in superconductors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37322591</pmid><doi>10.1021/acsami.3c00593</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7409-3367</orcidid><orcidid>https://orcid.org/0000-0003-0489-5836</orcidid><orcidid>https://orcid.org/0000-0003-3937-0570</orcidid><orcidid>https://orcid.org/0000-0001-6224-6717</orcidid><orcidid>https://orcid.org/0000-0003-2649-1971</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-06, Vol.15 (25), p.30029-30038
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_3c00593
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted T c > 77 K
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T18%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Generative%20Model%20for%20Inverse%20Design%20of%20High-Temperature%20Superconductor%20Compositions%20with%20Predicted%20T%20c%20%3E%2077%20K&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhong,%20Chengquan&rft.date=2023-06-28&rft.volume=15&rft.issue=25&rft.spage=30029&rft.epage=30038&rft.pages=30029-30038&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c00593&rft_dat=%3Cacs_cross%3Ec984264139%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a227t-3ac51463e5fcf964c814f0548f1325cb3438ebff6f573b94a291f34b231d04d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/37322591&rfr_iscdi=true