Loading…

Imaging Voids and Defects Inside Li-Ion Cathode LiNi 0.6 Mn 0.2 Co 0.2 O 2 Single Crystals

Li-ion battery cathode active materials obtained from different sources or preparation methods often exhibit broadly divergent performance and stability despite no obvious differences in morphology, purity, and crystallinity. We show how state-of-the-art, commercial, nominally single crystalline LiN...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-12, Vol.15 (51), p.59319-59328
Main Authors: Martens, Isaac, Vanpeene, Victor, Vostrov, Nikita, Leake, Steven, Zatterin, Edoardo, Auvergniot, Jeremie, Drnec, Jakub, Richard, Marie-Ingrid, Villanova, Julie, Schulli, Tobias
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1072-bd8ca473c89af3e463ae0f115aa87e59fd383ce2a229e981ce23203d446d22bb3
cites cdi_FETCH-LOGICAL-c1072-bd8ca473c89af3e463ae0f115aa87e59fd383ce2a229e981ce23203d446d22bb3
container_end_page 59328
container_issue 51
container_start_page 59319
container_title ACS applied materials & interfaces
container_volume 15
creator Martens, Isaac
Vanpeene, Victor
Vostrov, Nikita
Leake, Steven
Zatterin, Edoardo
Auvergniot, Jeremie
Drnec, Jakub
Richard, Marie-Ingrid
Villanova, Julie
Schulli, Tobias
description Li-ion battery cathode active materials obtained from different sources or preparation methods often exhibit broadly divergent performance and stability despite no obvious differences in morphology, purity, and crystallinity. We show how state-of-the-art, commercial, nominally single crystalline LiNi Mn Co O (NMC-622) particles possess extensive internal nanostructure even in the pristine state. Scanning X-ray diffraction microscopy reveals the presence of interlayer strain gradients, and crystal bending is attributed to oxygen vacancies. Phase contrast X-ray nano-tomography reveals two different kinds of particles, welded/aggregated, and single crystal like, and emphasizes the intra- and interparticle heterogeneities from the nano- to the microscale. It also detects within the imaging resolution (100 nm) substantial quantities of nanovoids hidden inside the bulk of two-thirds of the overall studied particles (around 3000), with an average value of 12.5% per particle and a mean size of 148 nm. The powerful combination of both techniques helps prescreening and quantifying the defective nature of cathode material and thus anticipating their performance in electrode assembly/battery testing.
doi_str_mv 10.1021/acsami.3c10509
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c10509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38085792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1072-bd8ca473c89af3e463ae0f115aa87e59fd383ce2a229e981ce23203d446d22bb3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EolC4ckT-Awn22knsIwqvSIUeeBy4RBvbKUZNUsXl0H-PaUtP36y0M9odQq44SzkDfoMmYOdTYTjLmD4iZ1xLmSjI4PigpZyQ8xC-GcsFsOyUTIRiKis0nJHPqsOF7xf0Y_A2UOwtvXOtM-tAqz546-jMJ9XQ0xLXX8N2fPGUpTl97iOAlsMWcwr0NeYsHS3HTVjjMlyQkzbCXe45Je8P92_lUzKbP1bl7SyJNxeQNFYZlIUwSmMrnMwFOtZyniGqwmW6tUIJ4wABtNOKRxm_EFbK3AI0jZiSdJdrxiGE0bX1avQdjpuas_qvpHpXUr0vKRqud4bVT9M5e1j_b0X8AmqJYAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Imaging Voids and Defects Inside Li-Ion Cathode LiNi 0.6 Mn 0.2 Co 0.2 O 2 Single Crystals</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Martens, Isaac ; Vanpeene, Victor ; Vostrov, Nikita ; Leake, Steven ; Zatterin, Edoardo ; Auvergniot, Jeremie ; Drnec, Jakub ; Richard, Marie-Ingrid ; Villanova, Julie ; Schulli, Tobias</creator><creatorcontrib>Martens, Isaac ; Vanpeene, Victor ; Vostrov, Nikita ; Leake, Steven ; Zatterin, Edoardo ; Auvergniot, Jeremie ; Drnec, Jakub ; Richard, Marie-Ingrid ; Villanova, Julie ; Schulli, Tobias</creatorcontrib><description>Li-ion battery cathode active materials obtained from different sources or preparation methods often exhibit broadly divergent performance and stability despite no obvious differences in morphology, purity, and crystallinity. We show how state-of-the-art, commercial, nominally single crystalline LiNi Mn Co O (NMC-622) particles possess extensive internal nanostructure even in the pristine state. Scanning X-ray diffraction microscopy reveals the presence of interlayer strain gradients, and crystal bending is attributed to oxygen vacancies. Phase contrast X-ray nano-tomography reveals two different kinds of particles, welded/aggregated, and single crystal like, and emphasizes the intra- and interparticle heterogeneities from the nano- to the microscale. It also detects within the imaging resolution (100 nm) substantial quantities of nanovoids hidden inside the bulk of two-thirds of the overall studied particles (around 3000), with an average value of 12.5% per particle and a mean size of 148 nm. The powerful combination of both techniques helps prescreening and quantifying the defective nature of cathode material and thus anticipating their performance in electrode assembly/battery testing.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c10509</identifier><identifier>PMID: 38085792</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2023-12, Vol.15 (51), p.59319-59328</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1072-bd8ca473c89af3e463ae0f115aa87e59fd383ce2a229e981ce23203d446d22bb3</citedby><cites>FETCH-LOGICAL-c1072-bd8ca473c89af3e463ae0f115aa87e59fd383ce2a229e981ce23203d446d22bb3</cites><orcidid>0000-0002-8172-3141 ; 0000-0003-1640-0386 ; 0000-0002-5383-440X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38085792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martens, Isaac</creatorcontrib><creatorcontrib>Vanpeene, Victor</creatorcontrib><creatorcontrib>Vostrov, Nikita</creatorcontrib><creatorcontrib>Leake, Steven</creatorcontrib><creatorcontrib>Zatterin, Edoardo</creatorcontrib><creatorcontrib>Auvergniot, Jeremie</creatorcontrib><creatorcontrib>Drnec, Jakub</creatorcontrib><creatorcontrib>Richard, Marie-Ingrid</creatorcontrib><creatorcontrib>Villanova, Julie</creatorcontrib><creatorcontrib>Schulli, Tobias</creatorcontrib><title>Imaging Voids and Defects Inside Li-Ion Cathode LiNi 0.6 Mn 0.2 Co 0.2 O 2 Single Crystals</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Li-ion battery cathode active materials obtained from different sources or preparation methods often exhibit broadly divergent performance and stability despite no obvious differences in morphology, purity, and crystallinity. We show how state-of-the-art, commercial, nominally single crystalline LiNi Mn Co O (NMC-622) particles possess extensive internal nanostructure even in the pristine state. Scanning X-ray diffraction microscopy reveals the presence of interlayer strain gradients, and crystal bending is attributed to oxygen vacancies. Phase contrast X-ray nano-tomography reveals two different kinds of particles, welded/aggregated, and single crystal like, and emphasizes the intra- and interparticle heterogeneities from the nano- to the microscale. It also detects within the imaging resolution (100 nm) substantial quantities of nanovoids hidden inside the bulk of two-thirds of the overall studied particles (around 3000), with an average value of 12.5% per particle and a mean size of 148 nm. The powerful combination of both techniques helps prescreening and quantifying the defective nature of cathode material and thus anticipating their performance in electrode assembly/battery testing.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EolC4ckT-Awn22knsIwqvSIUeeBy4RBvbKUZNUsXl0H-PaUtP36y0M9odQq44SzkDfoMmYOdTYTjLmD4iZ1xLmSjI4PigpZyQ8xC-GcsFsOyUTIRiKis0nJHPqsOF7xf0Y_A2UOwtvXOtM-tAqz546-jMJ9XQ0xLXX8N2fPGUpTl97iOAlsMWcwr0NeYsHS3HTVjjMlyQkzbCXe45Je8P92_lUzKbP1bl7SyJNxeQNFYZlIUwSmMrnMwFOtZyniGqwmW6tUIJ4wABtNOKRxm_EFbK3AI0jZiSdJdrxiGE0bX1avQdjpuas_qvpHpXUr0vKRqud4bVT9M5e1j_b0X8AmqJYAQ</recordid><startdate>20231227</startdate><enddate>20231227</enddate><creator>Martens, Isaac</creator><creator>Vanpeene, Victor</creator><creator>Vostrov, Nikita</creator><creator>Leake, Steven</creator><creator>Zatterin, Edoardo</creator><creator>Auvergniot, Jeremie</creator><creator>Drnec, Jakub</creator><creator>Richard, Marie-Ingrid</creator><creator>Villanova, Julie</creator><creator>Schulli, Tobias</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8172-3141</orcidid><orcidid>https://orcid.org/0000-0003-1640-0386</orcidid><orcidid>https://orcid.org/0000-0002-5383-440X</orcidid></search><sort><creationdate>20231227</creationdate><title>Imaging Voids and Defects Inside Li-Ion Cathode LiNi 0.6 Mn 0.2 Co 0.2 O 2 Single Crystals</title><author>Martens, Isaac ; Vanpeene, Victor ; Vostrov, Nikita ; Leake, Steven ; Zatterin, Edoardo ; Auvergniot, Jeremie ; Drnec, Jakub ; Richard, Marie-Ingrid ; Villanova, Julie ; Schulli, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1072-bd8ca473c89af3e463ae0f115aa87e59fd383ce2a229e981ce23203d446d22bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martens, Isaac</creatorcontrib><creatorcontrib>Vanpeene, Victor</creatorcontrib><creatorcontrib>Vostrov, Nikita</creatorcontrib><creatorcontrib>Leake, Steven</creatorcontrib><creatorcontrib>Zatterin, Edoardo</creatorcontrib><creatorcontrib>Auvergniot, Jeremie</creatorcontrib><creatorcontrib>Drnec, Jakub</creatorcontrib><creatorcontrib>Richard, Marie-Ingrid</creatorcontrib><creatorcontrib>Villanova, Julie</creatorcontrib><creatorcontrib>Schulli, Tobias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martens, Isaac</au><au>Vanpeene, Victor</au><au>Vostrov, Nikita</au><au>Leake, Steven</au><au>Zatterin, Edoardo</au><au>Auvergniot, Jeremie</au><au>Drnec, Jakub</au><au>Richard, Marie-Ingrid</au><au>Villanova, Julie</au><au>Schulli, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Voids and Defects Inside Li-Ion Cathode LiNi 0.6 Mn 0.2 Co 0.2 O 2 Single Crystals</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2023-12-27</date><risdate>2023</risdate><volume>15</volume><issue>51</issue><spage>59319</spage><epage>59328</epage><pages>59319-59328</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Li-ion battery cathode active materials obtained from different sources or preparation methods often exhibit broadly divergent performance and stability despite no obvious differences in morphology, purity, and crystallinity. We show how state-of-the-art, commercial, nominally single crystalline LiNi Mn Co O (NMC-622) particles possess extensive internal nanostructure even in the pristine state. Scanning X-ray diffraction microscopy reveals the presence of interlayer strain gradients, and crystal bending is attributed to oxygen vacancies. Phase contrast X-ray nano-tomography reveals two different kinds of particles, welded/aggregated, and single crystal like, and emphasizes the intra- and interparticle heterogeneities from the nano- to the microscale. It also detects within the imaging resolution (100 nm) substantial quantities of nanovoids hidden inside the bulk of two-thirds of the overall studied particles (around 3000), with an average value of 12.5% per particle and a mean size of 148 nm. The powerful combination of both techniques helps prescreening and quantifying the defective nature of cathode material and thus anticipating their performance in electrode assembly/battery testing.</abstract><cop>United States</cop><pmid>38085792</pmid><doi>10.1021/acsami.3c10509</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8172-3141</orcidid><orcidid>https://orcid.org/0000-0003-1640-0386</orcidid><orcidid>https://orcid.org/0000-0002-5383-440X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-12, Vol.15 (51), p.59319-59328
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_3c10509
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Imaging Voids and Defects Inside Li-Ion Cathode LiNi 0.6 Mn 0.2 Co 0.2 O 2 Single Crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Voids%20and%20Defects%20Inside%20Li-Ion%20Cathode%20LiNi%200.6%20Mn%200.2%20Co%200.2%20O%202%20Single%20Crystals&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Martens,%20Isaac&rft.date=2023-12-27&rft.volume=15&rft.issue=51&rft.spage=59319&rft.epage=59328&rft.pages=59319-59328&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c10509&rft_dat=%3Cpubmed_cross%3E38085792%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1072-bd8ca473c89af3e463ae0f115aa87e59fd383ce2a229e981ce23203d446d22bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38085792&rfr_iscdi=true